Участник:Nechaev/Черновик — различия между версиями
Nechaev (обсуждение | вклад) (→Хеширование цепочками) |
Nechaev (обсуждение | вклад) (→Линейное разрешение коллизий) |
||
(не показаны 22 промежуточные версии этого же участника) | |||
Строка 1: | Строка 1: | ||
− | ''' | + | '''Хеш-табли́ца''' {{---}} структура данных, реализующая интерфейс ассоциативного массива. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу. |
+ | |||
+ | === Введение === | ||
+ | Существует два основных вида хеш-таблиц: ''с цепочками'' и ''открытой адресацией''. Хеш-таблица содержит некоторый массив <tex>H</tex>, элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками). | ||
+ | |||
+ | Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код <tex>i = h(key)</tex> играет роль индекса в массиве <tex>H</tex>, а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск). | ||
+ | |||
+ | Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения. При вставке в хеш-таблицу размером 365 ячеек всего лишь 23-х элементов вероятность коллизии превышает 50%<ref> | ||
+ | <tex>p(n) = 1 - 1 \cdot \left(1-\frac{1}{len}\right) \cdot \left(1-\frac{2}{len}\right) \cdots \left(1-\frac{n-1}{len}\right) = { len \cdot len-1 \cdots (len-n+1) \over len^n } </tex> <tex> = { len! \over len^n \cdot (len-n)!},</tex><br> | ||
+ | где <tex>n</tex> {{---}} количество элементов в хеш-таблице, а <tex>len</tex> {{---}} её размер.</ref> (при равномерном распределении значений хеш-функции)<ref>[http://ru.wikipedia.org/wiki/Парадокс_дней_рождения Парадокс дней рождения {{---}} Википедия]</ref>. Способ разрешения коллизий — важная составляющая любой хеш-таблицы. | ||
+ | |||
+ | Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с ''прямой адресацией''; в них все операции, такие как: поиск, вставка и удаление работают за <tex>O(1)</tex>. | ||
+ | |||
+ | Если мы поделим число хранимых элементов на размер массива <tex>H</tex> (число возможных значений хеш-функции), то узнаем коэффициент заполнения хеш-таблицы (англ. ''load factor''). От этого параметра зависит среднее время выполнения операций. | ||
+ | |||
+ | === Хеширование === | ||
+ | |||
+ | '''Хеширование''' {{---}} класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за <tex>O(1)</tex>). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно | ||
различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. | различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций. | ||
{{Определение | {{Определение | ||
Строка 5: | Строка 22: | ||
|definition=<tex>U </tex> {{---}} множество объектов (универсум).<br> <tex>h : U \rightarrow S = \mathcal {f} 0 ... m - 1 \mathcal {g}</tex> {{---}} называется хеш-функцией, где множество <tex>S</tex> хранит ключи из множества <tex>U</tex>.<br> Если <tex>x \in U</tex> значит <tex>h(x) \in S</tex> <br> '''Коллизия:''' <tex>\exists x \neq y : h(x) = h(y)</tex> | |definition=<tex>U </tex> {{---}} множество объектов (универсум).<br> <tex>h : U \rightarrow S = \mathcal {f} 0 ... m - 1 \mathcal {g}</tex> {{---}} называется хеш-функцией, где множество <tex>S</tex> хранит ключи из множества <tex>U</tex>.<br> Если <tex>x \in U</tex> значит <tex>h(x) \in S</tex> <br> '''Коллизия:''' <tex>\exists x \neq y : h(x) = h(y)</tex> | ||
}} | }} | ||
− | |||
− | |||
==== Виды хеширования ==== | ==== Виды хеширования ==== | ||
− | * По способу хранения | + | * По способу хранения: |
** Статическое {{---}} фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов. | ** Статическое {{---}} фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов. | ||
** Динамическое {{---}} добавляем, удаляем и смотрим на наличие нужных элементов. | ** Динамическое {{---}} добавляем, удаляем и смотрим на наличие нужных элементов. | ||
− | * По виду хеш-функции | + | * По виду хеш-функции: |
− | ** Детерминированная хеш-функция | + | ** Детерминированная хеш-функция. |
− | ** Случайная хеш-функция | + | ** Случайная хеш-функция. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | === Свойства хеш-таблицы === | |
− | + | На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в списке, а именно <tex>\Theta(n)</tex>, но на практике хеширование более эффективно. При некоторых разумных допущениях математическое ожидание времени поиска элемента в хеш-таблице составляет <tex>O(1)</tex>. А все операции (поиск, вставка и удаление элементов) в среднем выполняются за время <tex>O(1)</tex>. | |
− | + | При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимо [[Перехеширование. Амортизационный анализ|перехешировать]] таблицу: увеличить размер массива <tex>H</tex> и заново добавить в новую хеш-таблицу все пары. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в | ||
− | При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимо увеличить размер массива <tex>H</tex> и заново добавить в новую хеш-таблицу все пары. | ||
== Разрешение коллизий == | == Разрешение коллизий == | ||
− | === | + | === Разрешение коллизий с помощью цепочек === |
[[Файл:open_hash.png|thumb|380px|right|Разрешение коллизий при помощи цепочек.]] | [[Файл:open_hash.png|thumb|380px|right|Разрешение коллизий при помощи цепочек.]] | ||
− | Каждая ячейка <tex>i</tex> массива <tex>H</tex> содержит указатель на начало списка всех элементов, хеш- | + | Каждая ячейка <tex>i</tex> массива <tex>H</tex> содержит указатель на начало списка всех элементов, хеш-код которых равен <tex>i</tex>, либо указывает на их отсутствие. Коллизии приводят к тому, что появляются списки размером больше одного элемента. |
Время, необходимое для вставки в наихудшем случае равно <tex>O(1)</tex>. Это операция выполняет быстро, так как считается, что вставляемый элемент отсутствует в таблице, но если потребуется, то перед вставкой мы можем выполнить поиск этого элемента. | Время, необходимое для вставки в наихудшем случае равно <tex>O(1)</tex>. Это операция выполняет быстро, так как считается, что вставляемый элемент отсутствует в таблице, но если потребуется, то перед вставкой мы можем выполнить поиск этого элемента. | ||
− | Время работы поиска в наихудшем случае пропорционально длине списка, а если все <tex>n</tex> ключей | + | Время работы поиска в наихудшем случае пропорционально длине списка, а если все <tex>n</tex> ключей захешировались в одну и ту же ячейку (создав список длиной <tex>n</tex>) время поиска будет равно <tex>\Theta(n)</tex> плюс время вычисления хеш-функции, что ничуть не лучше, чем использование связного списка для хранения всех <tex>n</tex> элементов. |
− | Удаления элемента может быть выполнено за <tex>O(1)</tex>, как и вставка, при использовании двухсвязного списка. | + | Удаления элемента может быть выполнено за <tex>O(1)</tex>, как и вставка, при использовании двухсвязного списка. |
− | === | + | === Линейное разрешение коллизий === |
[[Файл:close_hash.png|thumb|380px|right|Пример хеш-таблицы с открытой адресацией и линейным пробированием.]] | [[Файл:close_hash.png|thumb|380px|right|Пример хеш-таблицы с открытой адресацией и линейным пробированием.]] | ||
− | + | Все элементы хранятся непосредственно в хеш-таблице, без использования связных списков. В отличии от хеширования с цепочками, при использовании этого метода может возникнуть ситуация, когда хеш-таблица окажется полностью заполненной, следовательно будет невозможно добавлять в неё новые элементы. Так что при возникновении такой ситуации решением может быть динамическое увеличение размера хеш-таблицы, с одновременной её перестройкой. | |
− | + | Рассмотрим один из таких методов.<ref>Другой метод борьбы с коллизиями {{---}} [[Двойное хеширование | двойное хеширование]]</ref> | |
− | Алгоритм | + | В массиве <tex>H</tex> хранятся сами пары ключ-значение. Алгоритм вставки элемента проверяет ячейки массива <tex>H</tex> в заданном порядке до тех пор, пока не будет найдена первая свободная ячейка, в неё и будет записан новый элемент. Это позволяет сэкономить память на хранение указателей. |
− | + | Последовательность, в которой просматриваются ячейки хеш-таблицы, называется последовательностью проб. В общем случае, она зависит только от ключа элемента, то есть это последовательность <tex>h_0(x)</tex>, <tex>h_1(x)</tex>, ...,<tex>h_n</tex><tex>_-</tex><tex>_1</tex><tex>(x)</tex>, где <tex>x</tex> — ключ элемента, а <tex>h_i(x)</tex> — произвольные функции, сопоставляющие каждому ключу ячейку в хеш-таблице. Первый элемент в последовательности, как правило, равен значению некоторой хеш-функции от ключа, а остальные считаются от него каким-нибудь способом. Для успешной работы алгоритмов поиска последовательность проб должна быть такой, чтобы все ячейки хеш-таблицы оказались просмотренными ровно по одному разу.<ref>[[Поиск свободного места при закрытом хешировании | Поиск свободного места при закрытом хешировании]]</ref> | |
== Примечания == | == Примечания == | ||
Строка 63: | Строка 63: | ||
* Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» {{---}} «Вильямс», 2011 г. {{---}} 1296 стр. {{---}} ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1 | * Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» {{---}} «Вильямс», 2011 г. {{---}} 1296 стр. {{---}} ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1 | ||
* Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» {{---}} «Вильямс», 2007 г. {{---}} 824 стр. {{---}} ISBN 0-201-89685-0 | * Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» {{---}} «Вильямс», 2007 г. {{---}} 824 стр. {{---}} ISBN 0-201-89685-0 | ||
− | + | * [http://ru.wikipedia.org/wiki/Хеш-таблица Хеш-таблица {{---}} Википедия] | |
− | * [http://ru.wikipedia.org/wiki/Хеш-таблица | ||
[[Категория:Дискретная математика и алгоритмы]] | [[Категория:Дискретная математика и алгоритмы]] | ||
− | [[Категория: Хеширование]] | + | [[Категория:Хеширование]] |
Текущая версия на 17:25, 11 июня 2012
Хеш-табли́ца — структура данных, реализующая интерфейс ассоциативного массива. Представляет собой эффективную структуру данных для реализации словарей, а именно, она позволяет хранить пары (ключ, значение) и выполнять три операции: операцию добавления новой пары, операцию поиска и операцию удаления пары по ключу.
Содержание
Введение
Существует два основных вида хеш-таблиц: с цепочками и открытой адресацией. Хеш-таблица содержит некоторый массив
, элементы которого есть пары (хеш-таблица с открытой адресацией) или списки пар (хеш-таблица с цепочками).Выполнение операции в хеш-таблице начинается с вычисления хеш-функции от ключа. Хеш-код
играет роль индекса в массиве , а зная индекс, мы можем выполнить требующуюся операцию (добавление, удаление или поиск).Количество коллизий зависит от хеш-функции; чем лучше используемая хеш-функция, тем меньше вероятность их возникновения. При вставке в хеш-таблицу размером 365 ячеек всего лишь 23-х элементов вероятность коллизии превышает 50%[1] (при равномерном распределении значений хеш-функции)[2]. Способ разрешения коллизий — важная составляющая любой хеш-таблицы.
Полностью избежать коллизий для произвольных данных невозможно в принципе, и хорошая хеш-функция в состоянии только минимизировать их количество. Но, в некоторых специальных случаях их удаётся избежать. Если все ключи элементов известны заранее, либо меняются очень редко, то можно подобрать хеш-функцию, с помощью которой, все ключи будут распределены по хеш-таблице без коллизий. Это хеш-таблицы с прямой адресацией; в них все операции, такие как: поиск, вставка и удаление работают за
.Если мы поделим число хранимых элементов на размер массива
(число возможных значений хеш-функции), то узнаем коэффициент заполнения хеш-таблицы (англ. load factor). От этого параметра зависит среднее время выполнения операций.Хеширование
Хеширование — класс методов поиска, идея которого состоит в вычислении хеш-кода, однозначно определяемого элементом с помощью хеш-функции, и использовании его, как основы для поиска (индексирование в памяти по хеш-коду выполняется за
). В общем случае, однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше, чем вариантов исходных данных, поэтому существуют элементы, имеющие одинаковые хеш-коды — так называемые коллизии, но если два элемента имеют разный хеш-код, то они гарантированно различаются. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.Определение: |
— называется хеш-функцией, где множество хранит ключи из множества . Если значит Коллизия: | — множество объектов (универсум).
Виды хеширования
- По способу хранения:
- Статическое — фиксированное количество элементов. Один раз заполняем хеш-таблицу и осуществляем только проверку на наличие в ней нужных элементов.
- Динамическое — добавляем, удаляем и смотрим на наличие нужных элементов.
- По виду хеш-функции:
- Детерминированная хеш-функция.
- Случайная хеш-функция.
Свойства хеш-таблицы
На поиск элемента в хеш-таблице в худшем случае, может потребоваться столько же времени, как и в списке, а именно перехешировать таблицу: увеличить размер массива и заново добавить в новую хеш-таблицу все пары.
, но на практике хеширование более эффективно. При некоторых разумных допущениях математическое ожидание времени поиска элемента в хеш-таблице составляет . А все операции (поиск, вставка и удаление элементов) в среднем выполняются за время . При этом не гарантируется, что время выполнения отдельной операции мало́, так как при достижении некоторого значения коэффициента заполнения необходимоРазрешение коллизий
Разрешение коллизий с помощью цепочек
Каждая ячейка
массива содержит указатель на начало списка всех элементов, хеш-код которых равен , либо указывает на их отсутствие. Коллизии приводят к тому, что появляются списки размером больше одного элемента.Время, необходимое для вставки в наихудшем случае равно
. Это операция выполняет быстро, так как считается, что вставляемый элемент отсутствует в таблице, но если потребуется, то перед вставкой мы можем выполнить поиск этого элемента.Время работы поиска в наихудшем случае пропорционально длине списка, а если все
ключей захешировались в одну и ту же ячейку (создав список длиной ) время поиска будет равно плюс время вычисления хеш-функции, что ничуть не лучше, чем использование связного списка для хранения всех элементов.Удаления элемента может быть выполнено за
, как и вставка, при использовании двухсвязного списка.Линейное разрешение коллизий
Все элементы хранятся непосредственно в хеш-таблице, без использования связных списков. В отличии от хеширования с цепочками, при использовании этого метода может возникнуть ситуация, когда хеш-таблица окажется полностью заполненной, следовательно будет невозможно добавлять в неё новые элементы. Так что при возникновении такой ситуации решением может быть динамическое увеличение размера хеш-таблицы, с одновременной её перестройкой.
Рассмотрим один из таких методов.[3]
В массиве
хранятся сами пары ключ-значение. Алгоритм вставки элемента проверяет ячейки массива в заданном порядке до тех пор, пока не будет найдена первая свободная ячейка, в неё и будет записан новый элемент. Это позволяет сэкономить память на хранение указателей.Последовательность, в которой просматриваются ячейки хеш-таблицы, называется последовательностью проб. В общем случае, она зависит только от ключа элемента, то есть это последовательность [4]
, , ..., , где — ключ элемента, а — произвольные функции, сопоставляющие каждому ключу ячейку в хеш-таблице. Первый элемент в последовательности, как правило, равен значению некоторой хеш-функции от ключа, а остальные считаются от него каким-нибудь способом. Для успешной работы алгоритмов поиска последовательность проб должна быть такой, чтобы все ячейки хеш-таблицы оказались просмотренными ровно по одному разу.Примечания
- ↑
где — количество элементов в хеш-таблице, а — её размер. - ↑ Парадокс дней рождения — Википедия
- ↑ Другой метод борьбы с коллизиями — двойное хеширование
- ↑ Поиск свободного места при закрытом хешировании
Источники
- Томас Кормен, Чарльз Лейзерсон, Рональд Ривест, Клиффорд Штайн. «Алгоритмы. Построение и анализ» — «Вильямс», 2011 г. — 1296 стр. — ISBN 978-5-8459-0857-5, 5-8459-0857-4, 0-07-013151-1
- Дональд Кнут. «Искусство программирования, том 3. Сортировка и поиск» — «Вильямс», 2007 г. — 824 стр. — ISBN 0-201-89685-0
- Хеш-таблица — Википедия