Соотношение вероятностных классов — различия между версиями
(Новая страница: «{{Теорема |statement = <tex>\mathrm{RP} \subset \mathrm{NP} \subset \mathrm{PP} \subset \mathrm{PS}</tex>. |proof = 1. <tex>\mathrm{RP} \subset \mathrm{NP}...») |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 4 участников) | |||
Строка 1: | Строка 1: | ||
+ | {{Теорема | ||
+ | |statement = <tex>\mathrm{P} \subset \mathrm{ZPP} = \mathrm{RP} \cap \mathrm{coRP}</tex>. | ||
+ | |proof = | ||
+ | Утверждение <tex>\mathrm{P} \subset \mathrm{ZPP}</tex> является очевидным, так как программы, удовлетворяющие ограничениям <tex>\mathrm{P}</tex>, также удовлетворяют ограничениям класса <tex>\mathrm{ZPP}</tex>. | ||
+ | |||
+ | Докажем, что <tex>\mathrm{ZPP} = \mathrm{RP} \cap \mathrm{coRP}</tex>. | ||
+ | Для этого, покажем, что <tex>\mathrm{ZPP}_1 = \mathrm{RP} \cap \mathrm{coRP}</tex>. Тогда из <tex>\mathrm{ZPP} = \mathrm{ZPP}_1</tex> будет следовать требуемое. | ||
+ | |||
+ | 1) <tex>\mathrm{ZPP}_1 \subset \mathrm{RP}</tex>. Достаточно вместо <tex>?</tex> возвращать <tex>0</tex>. | ||
+ | |||
+ | 2) <tex>\mathrm{ZPP}_1 \subset\mathrm{coRP}</tex>. Достаточно вместо <tex>?</tex> возвращать <tex>1</tex>. | ||
+ | |||
+ | 3) <tex>\mathrm{ZPP}_1 \supset \mathrm{RP} \cap \mathrm{coRP}</tex>. | ||
+ | Пусть программа <tex>p_1</tex> удовлетворяет ограничениям <tex>\mathrm{RP}</tex> и ошибается на словах из языка <tex>L</tex> с вероятностью не более <tex>1/2</tex>, а программа <tex>p_2</tex> удовлетворяет ограничениям <tex>\mathrm{coRP}</tex> и ошибается на словах не из языка <tex>L</tex> с аналогичной вероятностью. Построим программу <tex>q</tex> для <tex>\mathrm{ZPP}_1</tex>: | ||
+ | <tex>q</tex>(x) | ||
+ | '''if''' <tex>p_2</tex>(x) = 0 | ||
+ | '''return''' 0 | ||
+ | '''if''' <tex>p_1</tex>(x) = 1 | ||
+ | '''return''' 1 | ||
+ | '''return''' ? | ||
+ | |||
+ | Вероятность вывести <tex>?</tex> есть <tex>\operatorname{P}(p_2(x) = 1, p_1(x) = 0) \le 1/2</tex>. | ||
+ | }} | ||
+ | |||
{{Теорема | {{Теорема | ||
|statement = <tex>\mathrm{RP} \subset \mathrm{NP} \subset \mathrm{PP} \subset \mathrm{PS}</tex>. | |statement = <tex>\mathrm{RP} \subset \mathrm{NP} \subset \mathrm{PP} \subset \mathrm{PS}</tex>. | ||
Строка 9: | Строка 33: | ||
'''if''' <tex>V</tex>(x, c) | '''if''' <tex>V</tex>(x, c) | ||
'''return''' 1 | '''return''' 1 | ||
− | '''return''' | + | '''return''' unfair_coin() |
Необходимо удовлетворить условию <tex>\operatorname{P}(q(x) = [x \in L]) > 1/2</tex>. | Необходимо удовлетворить условию <tex>\operatorname{P}(q(x) = [x \in L]) > 1/2</tex>. | ||
Строка 22: | Строка 46: | ||
<tex>\varepsilon < \frac{p_0}{2 (1 - p_0)}</tex>. | <tex>\varepsilon < \frac{p_0}{2 (1 - p_0)}</tex>. | ||
− | Достаточно взять <tex>\varepsilon \le p_0 / 2</tex>. Из сделанного выше замечания следует, что работу функции '' | + | Достаточно взять <tex>\varepsilon \le p_0 / 2</tex>. Из сделанного выше замечания следует, что работу функции ''unfair_coin''() можно смоделировать с помощью не более чем <tex>s(n) + 1</tex> вызовов ''random''(). Также учтем, что длина сертификата и время работы <tex>V</tex> полиномиальны относительно <tex>|x|</tex>. Таким образом, мы построили программу <tex>q</tex>, удовлетворяющую ограничениям класса <tex>\mathrm{PP}</tex>. |
+ | |||
+ | 3. <tex>\mathrm{PP} \subset \mathrm{PS}</tex>. Пусть <tex>p</tex> — программа для языка <tex>L \in \mathrm{PP}</tex>. Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для <tex>\mathrm{PS}</tex> будет перебирать все возможные вероятностные ленты нужной полиномиальной длины и запускать на них <tex>p</tex>. Ответом будет <tex>0</tex> или <tex>1</tex> в зависимости от того, каких ответов <tex>p</tex> оказалось больше. | ||
+ | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |statement = | ||
+ | <tex>\mathrm{RP} \cup \mathrm{coRP} \subset \mathrm{BPP}</tex>. | ||
+ | |proof = | ||
+ | Пусть <tex>p</tex> — программа для <tex>L \in \mathrm{RP}</tex>. Программу <tex>q</tex> для <tex>\mathrm{BPP}</tex> определим следующим образом: | ||
+ | <tex>q</tex>(x) | ||
+ | u <- <tex>p</tex>(x) | ||
+ | v <- <tex>p</tex>(x) | ||
+ | '''return''' u '''or''' v | ||
+ | Пусть <tex>x \in L</tex>. В этом случае вероятность ошибки равна <tex>\operatorname{P}(u = 0, v = 0) = \operatorname{P}(u = 0) \cdot \operatorname{P}(v = 0) \le 1/4</tex>. | ||
+ | |||
+ | Пусть <tex>x \notin L</tex>. Тогда с вероятностью <tex>1</tex> будет верно <tex>u = 0, v = 0</tex> и <tex>q</tex> вернет правильный ответ. | ||
− | + | Аналогично доказывается, что <tex>\mathrm{coRP} \subset \mathrm{BPP}</tex>. | |
}} | }} | ||
== Литература == | == Литература == | ||
* [http://www.cs.princeton.edu/theory/complexity/ Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach] | * [http://www.cs.princeton.edu/theory/complexity/ Sanjeev Arora, Boaz Barak. Computational Complexity: A Modern Approach] |
Текущая версия на 19:23, 4 сентября 2022
Теорема: |
. |
Доказательство: |
Утверждение является очевидным, так как программы, удовлетворяющие ограничениям , также удовлетворяют ограничениям класса .Докажем, что . Для этого, покажем, что . Тогда из будет следовать требуемое.1) . Достаточно вместо возвращать .2) . Достаточно вместо возвращать .3) . Пусть программа удовлетворяет ограничениям и ошибается на словах из языка с вероятностью не более , а программа удовлетворяет ограничениям и ошибается на словах не из языка с аналогичной вероятностью. Построим программу для :Вероятность вывести (x) if (x) = 0 return 0 if (x) = 1 return 1 return ? есть . |
Теорема: |
. |
Доказательство: |
1. . Если в программе для заменить все вызовы random() на недетерминированный выбор, то получим программу для с ограничениями .2. . Приведем программу с ограничениями класса , которая разрешает . Пусть функция infair_coin() моделирует нечестную монету, а именно возвращает единицу с вероятностью , где мы определим позже, и ноль с вероятностью . Пусть также — верификатор сертификатов для . Тогда будет выглядеть следующим образом:(x) c <- случайный сертификат if (x, c) return 1 return unfair_coin() Необходимо удовлетворить условию .Пусть . В этом случае вернет и результат работы программы будет зависеть от нечестной монеты. Она вернет с вероятностью .Пусть по формуле полной вероятности , где — вероятность угадать правильный сертификат. Заметим, что поскольку длина всех сертификатов ограничена некоторым полиномом и существует хотя бы один правильный сертификат, . Найдем из неравенства : . Тогда; ; . Достаточно взять 3. . Из сделанного выше замечания следует, что работу функции unfair_coin() можно смоделировать с помощью не более чем вызовов random(). Также учтем, что длина сертификата и время работы полиномиальны относительно . Таким образом, мы построили программу , удовлетворяющую ограничениям класса . . Пусть — программа для языка . Она используют не более чем полиномиальное количество вероятностных бит, так как сама работает за полиномиальное время. Тогда программа для будет перебирать все возможные вероятностные ленты нужной полиномиальной длины и запускать на них . Ответом будет или в зависимости от того, каких ответов оказалось больше. |
Теорема: |
. |
Доказательство: |
Пусть — программа для . Программу для определим следующим образом:(x) u <- (x) v <- (x) return u or v Пусть . В этом случае вероятность ошибки равна .Пусть Аналогично доказывается, что . Тогда с вероятностью будет верно и вернет правильный ответ. . |