Ортогональный поиск — различия между версиями
Glukos (обсуждение | вклад) (→Одномерный случай) |
м (rollbackEdits.php mass rollback) |
||
(не показано 9 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
Пусть задано множество точек <tex>S</tex> из пространства <tex>\mathbb R^n</tex>. Пусть односвязная область <tex>R \subset \mathbb R^n</tex> такова, что её границы ортогональны координатным прямым. Требуется определить множество точек <tex>S' \subset S</tex>, лежащих в области <tex>R</tex>. | Пусть задано множество точек <tex>S</tex> из пространства <tex>\mathbb R^n</tex>. Пусть односвязная область <tex>R \subset \mathbb R^n</tex> такова, что её границы ортогональны координатным прямым. Требуется определить множество точек <tex>S' \subset S</tex>, лежащих в области <tex>R</tex>. | ||
== Одномерный случай == | == Одномерный случай == | ||
Строка 24: | Строка 23: | ||
} | } | ||
− | Алгоритм работает за <tex>O(\log n)</tex>. | + | Алгоритм работает за <tex>O(\log n + T)</tex>, где <tex>T</tex> - количество точек в ответе.<br> |
+ | |||
+ | '''Примечание:''' Если задача сформулирована так, что нужно вывести все искомые точки, то запрос не может выполняться быстрее, чем за <tex>O(T)</tex>. Однако, далеко не во всех задачах ортогонального поиска нужно получать все точки в явном виде. Поэтому далее время, необходимое для вывода полного ответа, будет опускаться в оценке времени запроса. | ||
== Двумерный случай == | == Двумерный случай == | ||
Строка 50: | Строка 51: | ||
== Ускорение запроса == | == Ускорение запроса == | ||
Для ускорения запроса можно "прошить" дерево поиска по предпоследней координате, а именно: каждый элемент массива, сохраненного в какой-либо вершине, соединить с элементами массивов, сохраненных в вершинах-детях. Соединять будем по следующему принципу: элемент <tex>(x, y)</tex> массива-предка соединим с элементами <tex>upper\_bound(y)</tex> и <tex>lower\_bound(y)</tex> каждого массива-ребенка. Ниже представлен пример соединения корня с его левым сыном:<br>[[Файл:ortog_search_tree3.png]]<br>Для выполнения завершающей фазы поиска нам достаточно будет посчитать <tex>upper\_bound()</tex> и <tex>lower\_bound()</tex> только на массиве, привязанному к корню дерева. Для получения границ на других массивах можно будет просто спуститься по ссылкам. Заметим, что все вершины, к массивам которых нужно перейти, смежны с какой-либо из вершин путей <tex>v_l \to v_n</tex> или <tex>v_r \to v_n</tex>. Отсюда следует, что число спусков оценивается как <tex>O(length(v_l \to v_n) + length(v_r \to v_n)) = O(\log n)</tex>. <br>Таким образом, поиск теперь будет выполняться за <tex>O(\log^{p-1} n)</tex>, где <tex>p</tex> — размерность пространства. | Для ускорения запроса можно "прошить" дерево поиска по предпоследней координате, а именно: каждый элемент массива, сохраненного в какой-либо вершине, соединить с элементами массивов, сохраненных в вершинах-детях. Соединять будем по следующему принципу: элемент <tex>(x, y)</tex> массива-предка соединим с элементами <tex>upper\_bound(y)</tex> и <tex>lower\_bound(y)</tex> каждого массива-ребенка. Ниже представлен пример соединения корня с его левым сыном:<br>[[Файл:ortog_search_tree3.png]]<br>Для выполнения завершающей фазы поиска нам достаточно будет посчитать <tex>upper\_bound()</tex> и <tex>lower\_bound()</tex> только на массиве, привязанному к корню дерева. Для получения границ на других массивах можно будет просто спуститься по ссылкам. Заметим, что все вершины, к массивам которых нужно перейти, смежны с какой-либо из вершин путей <tex>v_l \to v_n</tex> или <tex>v_r \to v_n</tex>. Отсюда следует, что число спусков оценивается как <tex>O(length(v_l \to v_n) + length(v_r \to v_n)) = O(\log n)</tex>. <br>Таким образом, поиск теперь будет выполняться за <tex>O(\log^{p-1} n)</tex>, где <tex>p</tex> — размерность пространства. | ||
− | |||
− | |||
− | + | [[Категория: Вычислительная геометрия]] | |
− |
Текущая версия на 19:19, 4 сентября 2022
Пусть задано множество точек
из пространства . Пусть односвязная область такова, что её границы ортогональны координатным прямым. Требуется определить множество точек , лежащих в области .Содержание
Одномерный случай
Пусть дана прямая с точками на ней и отрезок. Необходимо указать, какие из точек лежат на этом отрезке.
Задача тривиальна — нужно оставить только те точки, которые лежат между началом и концом отрезка.
На практике для быстрого осуществления запроса нужно хранить точки в отсортированном массиве и пользоваться двоичным поиском. В C++ данная задача решается с помощью функций из STL - upper_bound и lower_bound.
lower_bound возвращает итератор на первый элемент, больший либо равный данного.
upper_bound возвращает итератор на первый элемент множества со значением, большим данного.
Рассмотрим на примере:
Код реализации:
template<class RauIter, class OutIter, class Scalar> OutIter range_search(RauIter p, RauIter q, OutIter out) { return std::copy(lower_bound(p, q, l), upper_bound(p, q, r), out); }
Алгоритм работает за
Примечание: Если задача сформулирована так, что нужно вывести все искомые точки, то запрос не может выполняться быстрее, чем за
. Однако, далеко не во всех задачах ортогонального поиска нужно получать все точки в явном виде. Поэтому далее время, необходимое для вывода полного ответа, будет опускаться в оценке времени запроса.Двумерный случай
Пусть дано некоторое множество точек на плоскости. Нам необходимо ответить, какие именно из них лежат в некотором заданном прямоугольнике.
Для этого возьмем любое сбалансированное дерево поиска и наполним его точками
Рассмотрим на примере:
Рассмотрим, как в такой структуре данных будет выглядеть поиск множества точек, находящихся в заданном прямоугольнике . Для начала, найдем в дереве те точки, -координата которых лежит в интервале . Сделаем это следующим образом:
- Найдем в дереве поиска вершины с минимальной и максимальной -координатой из прямоугольника запроса, добавим их в искомое множество, обозначим их как и .
- Добавим в искомое множество их наименьшего общего предка .
- Для каждой из промежуточных вершин на восходящем пути зафиксируем, из какого ребенка мы поднялись в вершину . Если мы поднялись из левого сына, то добавим в искомое множество саму вершину , а также множество точек, находящихся в поддереве правого сына вершины . Если же мы поднялись из правого сына, то не добавляем ничего.
- Повторим процесс для пути . Здесь ориентация сторон инвертирована: будем пополнять множество в том случае, если мы поднялись из правого сына.
Пример процесса показан на иллюстрации:
В итоге, в множество мы добавим вершин и поддеревьев дерева поиска. Теперь нужно просеять полученное множество — извлечь из него те элементы, -координата которых не лежит в интервале . Для точек это сделать просто — нужно вручную проверить, лежит ли -координата в нужном интервале. Для каждого из полученных поддеревьев обратимся к массиву содержащихся в нем точек и запустим от него приведенную выше функцию . Все полученные таким образом точки и будут составлять ответ.
Каждая из функций будет работать в худшем случае за , отсюда получаем итоговое время выполнения запроса . Что касается памяти, то в сбалансированном дереве поиска слоев, а каждый слой хранит массивы, содержащие в сумме ровно точек, соответственно вся структура в целом занимает памяти.
Обобщение для p-мерного пространства
Такую структуру данных можно при необходимости обобщить на случай большей размерности. Пусть у нас есть множество точек из
-мерного пространства, каждая из которых представляется как координатных чисел: . Тогда, строя дерево поиска по координате , в каждой вершине будем хранить другое дерево поиска с ключом , составленное из точек, лежащих в соответствующем поддереве. В дереве поиска, составленном по предпоследней координате , уже не будет необходимости хранить в каждой вершине целое дерево, поскольку при переходе на последнюю координату дальнейший поиск производиться не будет, поэтому в вершинах будем хранить массивы, так же, как и в двумерном случае. Оценим занимаемую память и время запроса: при добавлении следующей координаты асимптотика обеих величин умножается на . Отсюда, получаем оценку на время запроса и на занимаемую память.Такой же результат можно получить с помощью сжатого многомерного дерева отрезков.
Ускорение запроса
Для ускорения запроса можно "прошить" дерево поиска по предпоследней координате, а именно: каждый элемент массива, сохраненного в какой-либо вершине, соединить с элементами массивов, сохраненных в вершинах-детях. Соединять будем по следующему принципу: элемент
Для выполнения завершающей фазы поиска нам достаточно будет посчитать и только на массиве, привязанному к корню дерева. Для получения границ на других массивах можно будет просто спуститься по ссылкам. Заметим, что все вершины, к массивам которых нужно перейти, смежны с какой-либо из вершин путей или . Отсюда следует, что число спусков оценивается как .
Таким образом, поиск теперь будет выполняться за , где — размерность пространства.