Интеграл Дирихле — различия между версиями
Sementry (обсуждение | вклад) м (пофиксил недочеты) |
м (rollbackEdits.php mass rollback) |
||
(не показано 10 промежуточных версий 5 участников) | |||
Строка 1: | Строка 1: | ||
− | + | [[Определение ряда Фурье|<<]][[Интеграл Фейера|>>]] | |
Для удобства вводим обозначения: | Для удобства вводим обозначения: | ||
− | <tex>A_n(f,x)=A_n(x)=a_n\cos{nx}+b_n\sin{nx}</tex>,где <tex>a_n</tex>, <tex>b_n</tex> {{---}} коэффициенты Фурье, | + | <tex>A_n(f,x)=A_n(x)=a_n\cos{nx}+b_n\sin{nx}</tex>, <tex>A_0 = \frac{a_0}2</tex>, где <tex>a_n</tex>, <tex>b_n</tex> {{---}} коэффициенты Фурье, |
<tex>S_n(f,x)=S_n(x)=\sum\limits_{k=0}^{n}A_k(x)</tex> {{---}} частичные суммы ряда Фурье, | <tex>S_n(f,x)=S_n(x)=\sum\limits_{k=0}^{n}A_k(x)</tex> {{---}} частичные суммы ряда Фурье, | ||
<tex>\sigma(f,x)=\sigma(x)=\sum\limits_{k=0}^{\infty}A_k(x)</tex> {{---}} ряд Фурье. | <tex>\sigma(f,x)=\sigma(x)=\sum\limits_{k=0}^{\infty}A_k(x)</tex> {{---}} ряд Фурье. | ||
Строка 8: | Строка 8: | ||
Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла: | Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла: | ||
− | <tex>S_n(x)=</tex><tex>\frac{1}{2\pi}\int\limits_{Q}f(t)dt+\sum\limits_{k=1}^{n}(\frac{1}{\pi}\int\limits_{Q}f(t)\cos{kt}dt\cos{kx} + \frac{1}{\pi}\int\limits_{Q}f(t)\sin{kt}dt\sin{kx})</tex> | + | <tex>S_n(x)=</tex><tex>\frac{1}{2\pi}\int\limits_{Q}f(t)dt+\sum\limits_{k=1}^{n}(\frac{1}{\pi}\int\limits_{Q}f(t)\cos{kt}\,dt\cos{kx} + \frac{1}{\pi}\int\limits_{Q}f(t)\sin{kt}\,dt\sin{kx})</tex> |
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим | По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим | ||
− | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx})dt | + | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}(\cos{kt}\cos{kx}+\sin{kt}\sin{kx}))dt=</tex> |
− | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}cos{k(x-t)})dt</tex>. | + | <tex>\int\limits_{Q}f(t)\frac{1}{\pi}(\frac{1}{2}+\sum\limits_{k=1}^{n}\cos{k(x-t)})dt</tex>. |
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 40: | Строка 40: | ||
Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>: | Домножим это выражение на <tex>\sin{\frac{t}{2}}</tex>: | ||
− | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n} | + | <tex>\sin{\frac{t}{2}}D_n(t) = \frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\sum\limits_{k=1}^{n} \cos{kt} \sin{\frac{t}{2}})=</tex> |
− | cos{kt} \sin{\frac{t}{2}})=</tex> | ||
<tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex> | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}\sum\limits_{k=1}^{n}(\sin{(k+\frac{1}{2})t}-\sin{(k-\frac{1}{2})t}))=</tex> | ||
− | <tex>\frac{1}{\pi}(\frac{1}{2}sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex> | + | <tex>\frac{1}{\pi}(\frac{1}{2}\sin{\frac{t}{2}}+\frac{1}{2}(\sin{(n+\frac{1}{2})t}-\sin{\frac{t}{2}}))=</tex> <tex>\frac{1}{2\pi}\sin{(n+\frac{1}{2})t}</tex> |
Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу. | Разделив обе части на <tex>\sin{\frac{t}{2}}</tex>, получим требуемую формулу. | ||
}} | }} | ||
− | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{( | + | |
+ | Используя эту формулу, можно записать: <tex dpi="140">S_n(f,x)=\int\limits_{-\pi}^{\pi}f(x+t)\frac{1}{2\pi}\frac{\sin{(n+\frac{1}{2})t}}{\sin{\frac{t}{2}}}dt=</tex> (пользуясь четностью ядра и линейностью интеграла) | ||
<tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex> | <tex>=\int\limits_{-\pi}^{0}+\int\limits_{0}^{\pi}=\int\limits_{0}^{\pi}(f(x+t)+f(x-t))D_n(t)dt</tex> | ||
Строка 56: | Строка 56: | ||
Приходим к формуле: | Приходим к формуле: | ||
− | <tex>S_n(f,x)-S=\int\limits_{0}^{\pi}(f(x+t)+f(x-t)-2S)D_n(t)dt</tex> {{---}} основная формула для изучения сходимости ряда Фурье в индивидуальной точке <tex> | + | <tex>S_n(f,x)-S=\int\limits_{0}^{\pi}(f(x+t)+f(x-t)-2S)D_n(t)dt</tex> {{---}} основная формула для изучения сходимости ряда Фурье в индивидуальной точке <tex>x</tex>. |
+ | |||
+ | == См. также == | ||
+ | [http://ru.wikipedia.org/wiki/%D0%AF%D0%B4%D1%80%D0%BE_%D0%94%D0%B8%D1%80%D0%B8%D1%85%D0%BB%D0%B5 Википедия — Ядро Дирихле] | ||
+ | |||
+ | [[Определение ряда Фурье|<<]][[Интеграл Фейера|>>]] | ||
+ | [[Категория:Математический анализ 2 курс]] |
Текущая версия на 19:43, 4 сентября 2022
Для удобства вводим обозначения:
, , где , — коэффициенты Фурье, — частичные суммы ряда Фурье, — ряд Фурье.Следуя Дирихле, запишем частичную сумму ряда Фурье посредством интеграла:
По свойствам интеграла, меняя местами значки интеграла и конечного суммирования, получим
.Определение: |
Тригонометрический полином вида | называется ядром Дирихле.
Подставляя эту функцию в только что полученную формулу, приходим к следующему выражению:
Определение: |
— интеграл Дирихле. |
Из формулы для ядра видно, что ядро — четная функция, более того, если ядро заинтегрировать по всему участку , то такой интеграл равен .
Воспользуемся свойством, что если — -периодична, то . Проделав замену переменных в интеграле Дирихле, приходим к формуле:
Определение: |
. В такой форме записи частичная сумма называется интегралом свертки c ядром . |
Чтобы применять этот интеграл, найдем замкнутое выражение для ядра.
Утверждение: |
По определению ядра: .Домножим это выражение на :
Разделив обе части на , получим требуемую формулу. |
Используя эту формулу, можно записать: (пользуясь четностью ядра и линейностью интеграла)
(это проверяется непосредственно). Пусть , тогда .
Приходим к формуле:
— основная формула для изучения сходимости ряда Фурье в индивидуальной точке .