Дерево Фенвика для некоммутативных операций — различия между версиями
(→Обновление элемента) |
м (rollbackEdits.php mass rollback) |
||
| (не показано 9 промежуточных версий 4 участников) | |||
| Строка 5: | Строка 5: | ||
Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию <tex> G </tex> (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить <tex> a_i </tex> на <tex> a_i' = a_i \cdot d </tex>, в данный момент обновляем элемент дерева с индексом <tex> j </tex>. Вместо <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot d \cdot \cdot \ldots \cdot a_j </tex> мы получим <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot \ldots \cdot a_j \cdot d </tex> (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен). | Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию <tex> G </tex> (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить <tex> a_i </tex> на <tex> a_i' = a_i \cdot d </tex>, в данный момент обновляем элемент дерева с индексом <tex> j </tex>. Вместо <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot d \cdot \cdot \ldots \cdot a_j </tex> мы получим <tex> a_{j \& (j + 1)} \cdot \ldots a_i \cdot \ldots \cdot a_j \cdot d </tex> (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен). | ||
| − | + | Для решения этой задачи нужно удалить отрезок после изменяемого элемента, изменить элемент, после чего добавить этот отрезок снова. | |
| − | === | + | {{Теорема |
| + | |statement= | ||
| + | Пусть <tex> s_i = a_1 \cdot a_2 \cdot \ldots \cdot a_i </tex> — результат выполнения операции на префиксе <tex> i </tex>; <tex> s_{i, j} = s_i^{-1} \cdot s_j </tex> — результат ее выполнения на отрезке <tex> [i; j] </tex>. Тогда элемент дерева с индексом <tex> j </tex> обновляется как <tex> t_j' = t_j \cdot s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>. | ||
| + | |||
| + | |proof= | ||
Может показаться, что этот способ не работает, так как <tex> s_i </tex>, возможно, уже было изменено, а <tex> s_j </tex> — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что <tex> (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} </tex>, получаем: | Может показаться, что этот способ не работает, так как <tex> s_i </tex>, возможно, уже было изменено, а <tex> s_j </tex> — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что <tex> (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} </tex>, получаем: | ||
| Строка 13: | Строка 17: | ||
<tex> {s_{i, j}'}^{-1} \cdot d \cdot s_{i, j}{'} = (d^{-1} \cdot s_{i, j})^{-1} \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>, то есть элемент дерева изменяется на правильное значение. | <tex> {s_{i, j}'}^{-1} \cdot d \cdot s_{i, j}{'} = (d^{-1} \cdot s_{i, j})^{-1} \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot d \cdot d^{-1} \cdot s_{i, j} = s_{i, j}^{-1} \cdot d \cdot s_{i, j} </tex>, то есть элемент дерева изменяется на правильное значение. | ||
| + | }} | ||
| + | === Время работы === | ||
| + | Пусть в дереве <tex> n </tex> элементов. Так как для каждого из <tex> O(\log {n}) </tex> изменяемых элементов дерева мы совершаем дополнительно запрос суммы на отрезке(а он работает за <tex> O(\log {n}) </tex> операций), то асимптотическое время работы обновления элемента ухудшается до <tex> O(\log^2{n}) </tex>. | ||
| − | + | == Пример == | |
Пусть есть массив из пяти матриц <tex> a </tex>: | Пусть есть массив из пяти матриц <tex> a </tex>: | ||
| Строка 37: | Строка 44: | ||
\end{array} </tex> | \end{array} </tex> | ||
| − | Пусть теперь <tex> a_2 = a_2 \cdot d = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} </tex>. Значит, надо изменить <tex> t_2 </tex> и <tex> t_{2 | (2 + 1)} = t_3 </tex>. | + | Пусть теперь <tex> a_2' = a_2 \cdot d = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} </tex>. Значит, надо изменить <tex> t_2 </tex> и <tex> t_{2 | (2 + 1)} = t_3 </tex>. |
<tex> t_2' = t_2 \cdot s_{2, 2}^{-1} \cdot d \cdot s_{2, 2} = t_2 \cdot (s_2^{-1} \cdot s_2)^{-1} \cdot d \cdot (t_2^{-1} \cdot t_2) = t_2 \cdot d = a_2' </tex> | <tex> t_2' = t_2 \cdot s_{2, 2}^{-1} \cdot d \cdot s_{2, 2} = t_2 \cdot (s_2^{-1} \cdot s_2)^{-1} \cdot d \cdot (t_2^{-1} \cdot t_2) = t_2 \cdot d = a_2' </tex> | ||
| Строка 49: | Строка 56: | ||
\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ | \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ | ||
\hline | \hline | ||
| − | t_0 = a_0 & t_1 = a_0 \cdot a_1 & t_2 = a_2' & t_3 = a_0 \cdot a_1 \cdot a_2 \cdot a_3 & t_4 = a_4 \\ | + | t_0 = a_0 & t_1 = a_0 \cdot a_1 & t_2' = a_2' & t_3 = a_0 \cdot a_1 \cdot a_2 \cdot a_3 & t_4 = a_4 \\ |
\end{array} </tex> | \end{array} </tex> | ||
| − | <tex> t_3' | + | Пересчитаем <tex> t_3' </tex>: |
| − | === | + | <tex> t_3' = t_3 \cdot s_{2, 3}^{-1} \cdot d \cdot s_{2, 3} </tex> |
| − | + | ||
| + | Рассчитаем суммы: | ||
| + | |||
| + | <tex> s_2' = t_{(2 \& 3) - 1} \cdot t_2' = t_1 \cdot t_2' = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 12 \\ 4 & 8 \end{pmatrix} </tex> | ||
| + | |||
| + | <tex> s_3 = t_3 = \begin{pmatrix} 1 & 10 \\ 0 & 8 \end{pmatrix} </tex> | ||
| + | |||
| + | <tex> s_{2, 3} = s_2'^{-1} \cdot s_3 = \begin{pmatrix} 1 & -2 \\ -0.5 & 2 \end{pmatrix} </tex> | ||
| + | |||
| + | <tex> t_3' = \begin{pmatrix} 12 & 38 \\ 8 & 24 \end{pmatrix} = a_0 \cdot a_1 \cdot a_2' \cdot a_3 </tex> | ||
| + | |||
| + | Итого в обновлённом дереве Фенвика всё верно: | ||
| + | |||
| + | <tex> \begin{array}{c||c||c||c||c} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} & | ||
| + | \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix} & | ||
| + | \begin{pmatrix} 3 & 4 \\ 2 & 4 \end{pmatrix} & | ||
| + | \begin{pmatrix} 12 & 38 \\ 8 & 24 \end{pmatrix} & | ||
| + | \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \\ | ||
| + | \hline | ||
| + | t_0 = a_0 & t_1 = a_0 \cdot a_1 & t_2' = a_2' & t_3' = a_0 \cdot a_1 \cdot a_2' \cdot a_3 & t_4 = a_4 \\ | ||
| + | \end{array} </tex> | ||
| + | ==См. также== | ||
| + | * [[Дерево Фенвика]] | ||
| + | * [[Дерево отрезков. Построение]] | ||
| + | |||
| + | ==Источники информации== | ||
| − | == | + | * [http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=F180153B9C0CD797594314B736E2CCC5?doi=10.1.1.14.8917&rep=rep1&type=pdf Peter M. Fenwick: A new data structure for cumulative frequency] |
| + | * [http://en.wikipedia.org/wiki/Fenwick_tree Wikipedia — Fenwick tree] | ||
| − | + | [[Категория: Дискретная математика и алгоритмы]] | |
| + | [[Категория: Дерево Фенвика]] | ||
| + | [[Категория: Структуры данных]] | ||
Текущая версия на 19:23, 4 сентября 2022
Обычное дерево Фенвика позволяет выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке с изменением элементов. Описываемая модификация дает возможность отказаться от коммутативности .
Обновление элемента
Как и ранее, для обновления элемента в дереве нужно изменить все, что хранит результат операции с этим элементом. Но теперь нельзя просто применить операцию (далее будем использовать мультипликативную нотацию) ко всем нужным элементам дерева. Пусть мы хотим изменить на , в данный момент обновляем элемент дерева с индексом . Вместо мы получим (так как больше нельзя переставлять элементы местами в операции на отрезке, ответ будет неверен).
Для решения этой задачи нужно удалить отрезок после изменяемого элемента, изменить элемент, после чего добавить этот отрезок снова.
| Теорема: |
Пусть — результат выполнения операции на префиксе ; — результат ее выполнения на отрезке . Тогда элемент дерева с индексом обновляется как . |
| Доказательство: |
|
Может показаться, что этот способ не работает, так как , возможно, уже было изменено, а — еще нет, значит, мы удаляем не тот отрезок, который должны удалить. Убедимся, что на самом деле все обновляется правильно. Учитывая, что , получаем: ; , то есть элемент дерева изменяется на правильное значение. |
Время работы
Пусть в дереве элементов. Так как для каждого из изменяемых элементов дерева мы совершаем дополнительно запрос суммы на отрезке(а он работает за операций), то асимптотическое время работы обновления элемента ухудшается до .
Пример
Пусть есть массив из пяти матриц :
Пусть — операция умножения матриц. Дерево Фенвика выглядит так:
Пусть теперь . Значит, надо изменить и .
После этого дерево выглядит так:
Пересчитаем :
Рассчитаем суммы:
Итого в обновлённом дереве Фенвика всё верно: