|
|
(не показано 14 промежуточных версий 4 участников) |
Строка 1: |
Строка 1: |
− | {{Требует доработки
| |
− | |item1=Не надо приводить таблицы умножения изоморфных групп. Группы, таблицы умножения которых приведены в статье, надо "расшифровать". Они все являются группами из примеров групп.
| |
− | |item2=Надо убрать алгоритм построения.
| |
− | |item3=Надо привести некоторые свойства конечных групп: все группы простого порядка <tex>p</tex> изоморфны <tex>\mathbb{Z}/p\mathbb{Z}</tex>, в простой группе порядок каждого элемента является делителем порядка группы. Свойства надо доказать.
| |
− | }}
| |
− |
| |
| {{Определение | | {{Определение |
| |definition= | | |definition= |
Строка 12: |
Строка 6: |
| == Таблицы умножения для конечных групп == | | == Таблицы умножения для конечных групп == |
| | | |
− | Таблица умножения(таблица Кэли) — таблица, которая описывает структуру конечных алгебраических систем с одной бинарной операцией. Таблица позволяет определить, является ли группа абелевой, найти ядро группы и обратные элементы по отношению к другим элементам в этой группе. | + | Таблица умножения (таблица Кэли) — таблица, которая описывает структуру конечных алгебраических систем с одной бинарной операцией. Таблица позволяет определить, является ли группа абелевой, найти ядро группы и обратные элементы по отношению к другим элементам в этой группе. |
| | | |
− | | + | === Структура === |
− | '''Структура'''
| + | Пусть <tex>\mathbb{A}_n = \{a_1,a_2,\dots,a_n\}</tex> — группа из <tex>n</tex> элементов. |
− | | |
− | Пусть <math>\mathbb{A}_n</math> = <math>\{a_1,a_2,\dots,a_n\}</math> - группа из n элементов. | |
| | | |
| Тогда таблица будет выглядеть следующим образом: | | Тогда таблица будет выглядеть следующим образом: |
Строка 40: |
Строка 32: |
| |} | | |} |
| | | |
− | '''Свойства'''
| + | === Свойства === |
| + | {{Утверждение |
| + | |statement=Каждая строка или столбец являются перестановкой элементов группы. |
| + | |proof=Пусть <tex>a,b,c,d \in G</tex>. Тогда <tex>ab=d</tex> и <tex>ac=d \Rightarrow b=c</tex>. Так как количество клеток в строке равно количеству элементов, то, по принципу Дирихле, каждый элемент группы встречается в строке один раз. |
| + | }} |
| + | {{Утверждение |
| + | |statement=Если таблица симметрична относительно главной диагонали, то операция умножения коммутативна. |
| + | |proof=Таблица симметрична <tex>\Rightarrow ab = ba</tex> для любых <tex>a,b \in G</tex> |
| + | }} |
| + | {{Утверждение |
| + | |statement=В конечной группе порядок каждого элемента является делителем порядка группы. |
| + | |proof= |
| + | Рассмотрим элемент <tex>x\in G</tex> c порядком <tex>n</tex> и подмножество <tex>\langle x\rangle=\lbrace e,\,x,\,x^2,\,...,x^{n-1}\rbrace</tex> (все <tex>x^k</tex> различны при <tex>k<n</tex> — в противном случае при <tex>x^k=x^m (m<k<n)\Rightarrow x^{k—m}=e</tex>, т.е. <tex>n>k—m</tex> не является порядком элемента <tex>x</tex>). Легко проверить, что <tex>\langle x\rangle</tex> — подгруппа <tex>G</tex>. По [[Теорема Лагранжа|теореме Лагранжа]] порядок любой подгруппы делит порядок группы. Значит, и <tex>n</tex> делит порядок <tex>G</tex>. |
| + | }} |
| + | {{Утверждение |
| + | |statement=Все группы простого порядка <tex>p</tex> изоморфны <tex>\mathbb{Z}/p\mathbb{Z}</tex>. |
| + | |proof= |
| + | Рассмотрим элемент <tex>x\in G,\,x\neq e</tex> c порядком <tex>n</tex> и подмножество <tex>\langle x\rangle=\lbrace e,\,x,\,x^2,\,...,x^{n-1}\rbrace</tex> (все <tex>x^k</tex> различны при <tex>k<n</tex> — см. выше). Очевидно, <tex>\langle x\rangle</tex> — подгруппа <tex>G</tex>, изоморфная <tex>\mathbb{Z}/n\mathbb{Z}</tex>. Но тогда <tex>n</tex> делит <tex>p</tex>(как порядок подгруппы) и не равняется единице(<tex>x^1\neq e</tex>), значит <tex>n=p</tex>. Раз порядок конечной подгруппы <tex>\mathbb{Z}/p\mathbb{Z}\subseteq G</tex> совпадает с порядком группы, то группа и подгруппа просто совпадают: <tex>\mathbb{Z}/p\mathbb{Z}\eqsim G</tex>. |
| + | }} |
| | | |
− | 1) Каждая строка или столбец являются перестановкой элементов группы
| + | === Примеры таблиц умножения для конечных групп === |
− | | + | Ниже перечислены все группы до шестого порядка включительно: |
− | 2) Если таблица симметрична относительно главной диагонали, то операция умножения коммутативна
| |
| | | |
− | | + | * <tex>|G| = 1</tex> |
− | '''Построение'''
| + | Тривиальная группа |
− | | |
− | Вследствие первого свойства, можно заполнить таблицу не имея всей информации об операции умножения. Если таблицу заполнить не удаётся(нарушается первое свойство - в ряде или колонке оказывается 2 одинаковых элемента), значит операции, удовлетворяющей данным соотношениям, не существует.
| |
− | | |
− | | |
− | ''Алгоритм построения'':
| |
− | | |
− | 1) заполнить "скелет" таблицы - ячейки в которых стоит нейтральный элемент. "Скелет" симметричен относительно главной диагонали(если a - обратный к b, то b - обратный к a, то есть любой элемент коммутирует со своим обратным).
| |
− | | |
− | 2) используя известные соотношения и свойство 1 заполнить таблицу.
| |
− | | |
− | ''Замечание'': по соглашению в заголовках таблицы 1-ым идёт нейтральный элемент, затем элементы, которые совпадают с обратным, затем остальные.
| |
− | | |
− | === Примеры таблиц умножения для конечных групп ===
| |
− | 1) n = 1
| |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
| !style="background:#efefef;"| * | | !style="background:#efefef;"| * |
Строка 70: |
Строка 65: |
| |} | | |} |
| | | |
− | 2) n = 2
| + | * <tex>|G| = 2</tex> |
− | {| border="1" cellpadding="4" align="center"
| + | Группа вычетов по модулю два относительно сложения: <tex>\mathbb{Z}/2\mathbb{Z}</tex> |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | |- | |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | 3) n = 3
| |
− | {| border="1" cellpadding="4" align="center" | |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>e</big> || <big>a</big>
| |
− | |}
| |
− | | |
− | 4) n = 4
| |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>a</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>e</big> || <big>a</big>
| |
− | |}
| |
− | 5) n = 5
| |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |}
| |
− | | |
− | 6) n = 6
| |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center" | |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>0</big> || <big>1</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big>a</big> || <big>e</big> || <big>c</big> || <big>f</big> || <big>b</big> || <big>d</big> | + | | <big>1</big> || <big>0</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>f</big> || <big>d</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>d</big> || <big>e</big> || <big>f</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>c</big> || <big>b</big>
| |
| |} | | |} |
| | | |
| + | * <tex>|G| = 3</tex> |
| + | Группа вычетов по модулю три относительно сложения: <tex>\mathbb{Z}/3\mathbb{Z}</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>0</big> || <big>1</big> || <big>2</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>b</big> || <big>f</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>b</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>1</big> || <big>2</big> || <big>0</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big> || <big>b</big> | + | | <big>2</big> || <big>0</big> || <big>1</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>a</big> || <big>f</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>d</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>e</big> || <big>b</big> || <big>a</big>
| |
| |} | | |} |
| | | |
| + | * <tex>|G| = 4</tex> |
| + | Группа вычетов по модулю четыре относительно сложения: <tex>\mathbb{Z}/4\mathbb{Z}</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>3</big> |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>b</big> || <big>c</big> | + | | <big>1</big> || <big>0</big> || <big>3</big> || <big>2</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big> | + | | <big>2</big> || <big>3</big> || <big>0</big> || <big>1</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big> | + | | <big>3</big> || <big>2</big> || <big>1</big> || <big>0</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>e</big> || <big>b</big>
| |
| |} | | |} |
| | | |
| + | Группа <tex>\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>(0,0)</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>(0,1)</big> |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>(1,0)</big> |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>(1,1)</big> |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>(0,0)</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>(0,0)</big> || <big>(0,1)</big> || <big>(1,0)</big> || <big>(1,1)</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>(0,1)</big> |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big> || <big>b</big> | + | | <big>(0,1)</big> || <big>(0,0)</big> || <big>(1,1)</big> || <big>(1,0)</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>(1,0)</big> |
− | | <big>c</big> || <big>b</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big> | + | | <big>(1,0)</big> || <big>(1,1)</big> || <big>(0,0)</big> || <big>(0,1)</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>d</big> | + | !style="background:#efefef;"| <big>(1,1)</big> |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big> | + | | <big>(1,1)</big> || <big>(1,0)</big> || <big>(0,1)</big> || <big>(0,0)</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>b</big> || <big>e</big>
| |
| |} | | |} |
| | | |
| + | * <tex>|G| = 5</tex> |
| + | Группа вычетов по модулю пять относительно сложения: <tex>\mathbb{Z}/5\mathbb{Z}</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>3</big> |
− | !style="background:#efefef;"| <big>d</big> | + | !style="background:#efefef;"| <big>4</big> |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>b</big> || <big>c</big> | + | | <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>0</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big>c</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big> | + | | <big>2</big> || <big>3</big> || <big>4</big> || <big>0</big> || <big>1</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>d</big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big> | + | | <big>3</big> || <big>4</big> || <big>0</big> || <big>1</big> || <big>2</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>f</big> | + | !style="background:#efefef;"| <big>4</big> |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>e</big> || <big>b</big> | + | | <big>4</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> |
| |} | | |} |
| | | |
| + | * <tex>|G| = 6</tex> |
| + | Группа вычетов по модулю шесть относительно сложения: <tex>\mathbb{Z}/6\mathbb{Z}</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
− | !style="background:#efefef;"| * | + | !style="background:#efefef;"| + |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>3</big> |
− | !style="background:#efefef;"| <big>d</big> | + | !style="background:#efefef;"| <big>4</big> |
− | !style="background:#efefef;"| <big>f</big> | + | !style="background:#efefef;"| <big>5</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>0</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>a</big> | + | !style="background:#efefef;"| <big>1</big> |
− | | <big>a</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big> || <big>b</big> | + | | <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>b</big> | + | !style="background:#efefef;"| <big>2</big> |
− | | <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big> | + | | <big>2</big> || <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>c</big> | + | !style="background:#efefef;"| <big>3</big> |
− | | <big>c</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big> | + | | <big>3</big> || <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>d</big> | + | !style="background:#efefef;"| <big>4</big> |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big> | + | | <big>4</big> || <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> |
| |- | | |- |
− | !style="background:#efefef;"| <big>f</big> | + | !style="background:#efefef;"| <big>5</big> |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>b</big> || <big>e</big> | + | | <big>5</big> || <big>0</big> || <big>1</big> || <big>2</big> || <big>3</big> || <big>4</big> |
| |} | | |} |
| | | |
| + | Группа перестановок множества из трех элементов: <tex>\mathbb{S}_3</tex> |
| {| border="1" cellpadding="4" align="center" | | {| border="1" cellpadding="4" align="center" |
| !style="background:#efefef;"| * | | !style="background:#efefef;"| * |
| !style="background:#efefef;"| <big>e</big> | | !style="background:#efefef;"| <big>e</big> |
| !style="background:#efefef;"| <big>a</big> | | !style="background:#efefef;"| <big>a</big> |
| + | !style="background:#efefef;"| <big>aa</big> |
| !style="background:#efefef;"| <big>b</big> | | !style="background:#efefef;"| <big>b</big> |
| !style="background:#efefef;"| <big>c</big> | | !style="background:#efefef;"| <big>c</big> |
| !style="background:#efefef;"| <big>d</big> | | !style="background:#efefef;"| <big>d</big> |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
| !style="background:#efefef;"| <big>e</big> | | !style="background:#efefef;"| <big>e</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>e</big> || <big>a</big> || <big>aa</big> || <big>b</big> || <big>c</big> || <big>d</big> |
| |- | | |- |
| !style="background:#efefef;"| <big>a</big> | | !style="background:#efefef;"| <big>a</big> |
− | | <big>a</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big> | + | | <big>a</big> || <big>aa</big> || <big>e</big> || <big>c</big> || <big>d</big> || <big>b</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>e</big> || <big>a</big> || <big>f</big> || <big>c</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>c</big> || <big>a</big> || <big>b</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>c</big> || <big>d</big> || <big>b</big> || <big>e</big> || <big>a</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
| |- | | |- |
− | !style="background:#efefef;"| <big>e</big> | + | !style="background:#efefef;"| <big>aa</big> |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> | + | | <big>aa</big> || <big>e</big> || <big>a</big> || <big>d</big> || <big>b</big> || <big>c</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big>
| |
| |- | | |- |
| !style="background:#efefef;"| <big>b</big> | | !style="background:#efefef;"| <big>b</big> |
− | | <big>b</big> || <big>e</big> || <big>a</big> || <big>f</big> || <big>c</big> || <big>d</big> | + | | <big>b</big> || <big>d</big> || <big>c</big> || <big>e</big> || <big>aa</big> || <big>a</big> |
| |- | | |- |
| !style="background:#efefef;"| <big>c</big> | | !style="background:#efefef;"| <big>c</big> |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>b</big> || <big>a</big> | + | | <big>c</big> || <big>b</big> || <big>d</big> || <big>a</big> || <big>e</big> || <big>aa</big> |
| |- | | |- |
| !style="background:#efefef;"| <big>d</big> | | !style="background:#efefef;"| <big>d</big> |
− | | <big>d</big> || <big>f</big> || <big>c</big> || <big>a</big> || <big>e</big> || <big>b</big> | + | | <big>d</big> || <big>c</big> || <big>b</big> || <big>aa</big> || <big>a</big> || <big>e</big> |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>c</big> || <big>d</big> || <big>b</big> || <big>a</big> || <big>e</big>
| |
| |} | | |} |
| | | |
− | {| border="1" cellpadding="4" align="center"
| + | Для группы <tex>\mathbb{S}_3</tex> <tex>a</tex> — это циклическая перестановка <tex>(123)\rightarrow(231)</tex>, а <tex>b,\,c,\,d</tex> — транспозиции <tex>(123)\rightarrow(213),\,(123)\rightarrow(132),\,(123)\rightarrow(321)</tex> соответственно. |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>e</big> || <big>a</big> || <big>f</big> || <big>c</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>c</big> || <big>e</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>c</big> || <big>d</big> || <big>b</big> || <big>a</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>e</big> || <big>a</big> || <big>f</big> || <big>c</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>c</big> || <big>b</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>c</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center" | |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>d</big> || <big>e</big> || <big>f</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>c</big> || <big>a</big> || <big>e</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>d</big> || <big>e</big> || <big>f</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>e</big> || <big>f</big> || <big>d</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>c</big> || <big>a</big> || <big>e</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>e</big> || <big>d</big> || <big>a</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>e</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>e</big> || <big>d</big> || <big>b</big> || <big>c</big> || <big>a</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>a</big> || <big>f</big> || <big>e</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>e</big> || <big>d</big> || <big>b</big> || <big>c</big> || <big>a</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>a</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>d</big> || <big>e</big> || <big>f</big> || <big>b</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>e</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>e</big> || <big>d</big> || <big>a</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>e</big> || <big>d</big> || <big>f</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>e</big> || <big>f</big> || <big>b</big> || <big>a</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>e</big> || <big>c</big> || <big>b</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>a</big> || <big>d</big> || <big>f</big> || <big>e</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>f</big> || <big>d</big> || <big>e</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>e</big> || <big>b</big> || <big>c</big> || <big>a</big>
| |
− | |}
| |
− | | |
− | {| border="1" cellpadding="4" align="center"
| |
− | !style="background:#efefef;"| *
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>e</big>
| |
− | | <big>e</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>d</big> || <big>f</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>a</big>
| |
− | | <big>a</big> || <big>b</big> || <big>c</big> || <big>f</big> || <big>e</big> || <big>d</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>b</big>
| |
− | | <big>b</big> || <big>c</big> || <big>d</big> || <big>e</big> || <big>f</big> || <big>a</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>c</big>
| |
− | | <big>c</big> || <big>f</big> || <big>e</big> || <big>d</big> || <big>a</big> || <big>b</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>d</big>
| |
− | | <big>d</big> || <big>e</big> || <big>f</big> || <big>a</big> || <big>b</big> || <big>c</big>
| |
− | |-
| |
− | !style="background:#efefef;"| <big>f</big>
| |
− | | <big>f</big> || <big>d</big> || <big>a</big> || <big>b</big> || <big>c</big> || <big>e</big>
| |
− | |}
| |
− | | |
− | | |
| | | |
| [[Категория: Теория групп]] | | [[Категория: Теория групп]] |