Факторгруппа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Примеры)
м (rollbackEdits.php mass rollback)
 
(не показано 7 промежуточных версий 3 участников)
Строка 1: Строка 1:
{{Требует доработки
 
|item1=Требуется еще несколько примеров факторгрупп.
 
|item2=Требуется пример группы <tex>G</tex> и ее подгруппы <tex>H</tex> (не нормальной), для которых <tex>G/H</tex> не является группой.
 
}}
 
 
 
== Факторгруппа ==
 
== Факторгруппа ==
 
Рассмотрим [[группа|группу]] <tex>G</tex> и ее [[нормальная подгруппа|нормальную подгруппу]] <tex>H</tex>. Пусть <tex>G/H</tex> {{---}} множество [[Смежные классы|смежных классов]] <tex>G</tex> по <tex>H</tex>. Определим в <tex>G/H</tex> групповую операцию по следующему правилу.
 
Рассмотрим [[группа|группу]] <tex>G</tex> и ее [[нормальная подгруппа|нормальную подгруппу]] <tex>H</tex>. Пусть <tex>G/H</tex> {{---}} множество [[Смежные классы|смежных классов]] <tex>G</tex> по <tex>H</tex>. Определим в <tex>G/H</tex> групповую операцию по следующему правилу.
Строка 28: Строка 23:
 
* Рассмотрим группу невырожденных матриц <tex> GL_n</tex>. Отображение <tex>A \rightarrow \det A</tex> является гомоморфизмом <tex>GL_n \rightarrow \mathbb{R}</tex>. Ядро — группа матриц с единичным определителем <tex>SL_n</tex>. Поэтому <tex>SL_n</tex> является нормальной подгруппой в <tex>GL_n</tex> и факторгруппа <tex>GL_n/SL_n=\mathbb{R}</tex>.
 
* Рассмотрим группу невырожденных матриц <tex> GL_n</tex>. Отображение <tex>A \rightarrow \det A</tex> является гомоморфизмом <tex>GL_n \rightarrow \mathbb{R}</tex>. Ядро — группа матриц с единичным определителем <tex>SL_n</tex>. Поэтому <tex>SL_n</tex> является нормальной подгруппой в <tex>GL_n</tex> и факторгруппа <tex>GL_n/SL_n=\mathbb{R}</tex>.
  
* Подгруппа ортогональных матриц <tex>O_n\subset GL_n</tex> не является нормальной. Рассмотрим любую матрицу <tex>A \in GL_n,\, U \in O_n</tex> и проверим ортогональность матрицы <tex> AUA^{-1} </tex>: <tex> (AUA^{-1})^T(AUA^{-1})=(A^{-1})^TU^TA^TAUA^{-1}\neq E</tex>. То есть <tex>AO_nA^{-1}\neq O_n</tex>, что и означает, что <tex>O_n</tex> не является нормальной подгруппой <tex>GL_n</tex>.
+
{{Утверждение
 +
|statement= В группе перестановок из трех элементов <tex>G</tex> и ее '''не нормальной''' подгруппе <tex>H</tex> перестановок из двух элементов не затрагивающих третий элемент, <tex>G/H</tex> не будет являться группой.
 +
|proof=
 +
Рассмотрим группу <tex>S_3</tex>(перестановки трех элементов) и ее не нормальную подгруппу <tex>S'_2</tex>(перестановки не затрагивающие третий элемент). Рассмотрим множество перестановок <tex>S_3/S'_2</tex>:
 +
 
 +
класс <tex>E(abc \rightarrow abc</tex> и <tex>abc \rightarrow bac)</tex>,
 +
 
 +
класс <tex>A(abc \rightarrow acb</tex> и <tex>abc \rightarrow bca)</tex>,  
 +
 
 +
класс <tex>B(abc \rightarrow сab</tex> и <tex>abc \rightarrow cba)</tex>.
 +
 
 +
Это смежные классы для <tex>S'_2</tex>. Теперь рассмотрим произведения:  
 +
 
 +
<tex>abc \rightarrow acb \in A, \, abc \rightarrow cab \in B: (abc \rightarrow acb)(abc \rightarrow cab)=(abc \rightarrow cba) \Rightarrow AB=B</tex>  
 +
 
 +
 
 +
<tex> abc \rightarrow bca \in A, \, abc \rightarrow cba \in B: (abc \rightarrow bca)(abc \rightarrow cba)=(abc \rightarrow bca) \Rightarrow AB=E</tex>.
 +
 
 +
Противоречие. То есть согласованного с группой умножения нет. <tex> \Rightarrow S_3/S'_2</tex> не является группой.  
 +
}}
  
 
[[Категория: Теория групп]]
 
[[Категория: Теория групп]]

Текущая версия на 19:14, 4 сентября 2022

Факторгруппа

Рассмотрим группу [math]G[/math] и ее нормальную подгруппу [math]H[/math]. Пусть [math]G/H[/math] — множество смежных классов [math]G[/math] по [math]H[/math]. Определим в [math]G/H[/math] групповую операцию по следующему правилу.

Определение:
Произведением смежностных классов [math]aH[/math] и [math]bH[/math] назовем смежностный класс [math](ab)H[/math].


Утверждение:
Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей [math]a[/math] и [math]b[/math].
[math]\triangleright[/math]

Пусть [math]aH,bH\in G/H,\,a_1=a\cdot h_a\in aH,\,b_1=b\cdot h_b\in bH[/math]. Докажем, что [math]abH=a_1 b_1 H[/math]. Достаточно показать, что [math]a_1\cdot b_1 \in abH[/math].

В самом деле, [math]a_1\cdot b_1=a\cdot h_a\cdot b\cdot h_b=a\cdot b\cdot (b^{-1}\cdot h_a\cdot b)\cdot h_b[/math]. Элемент [math]h = (b^{-1}\cdot h_a\cdot b)[/math] лежит в [math]H[/math] по свойству нормальности [math]H[/math]. Следовательно, [math]a\cdot b\cdot h\cdot h_b\in abH[/math].
[math]\triangleleft[/math]


Определение:
Таким образом, множество смежных классов [math]G/H[/math] с введенной на нем операцией произведения образует группу, которая называется факторгруппой [math]G[/math] по [math]H[/math] . Нейтральным элементом является [math]H[/math], обратным к [math]aH[/math][math]a^{-1}H[/math].


Примеры

  • Рассмотрим [math]G=\mathbb{Z}[/math] и её нормальную подгруппу [math]H=n\mathbb{Z}[/math], тогда [math]G/H=\mathbb{Z}/n\mathbb{Z}[/math] (группы вычетов по модулю [math]n[/math]) будет являться факторгруппой G по H.
  • Рассмотрим группу невырожденных матриц [math] GL_n[/math]. Отображение [math]A \rightarrow \det A[/math] является гомоморфизмом [math]GL_n \rightarrow \mathbb{R}[/math]. Ядро — группа матриц с единичным определителем [math]SL_n[/math]. Поэтому [math]SL_n[/math] является нормальной подгруппой в [math]GL_n[/math] и факторгруппа [math]GL_n/SL_n=\mathbb{R}[/math].
Утверждение:
В группе перестановок из трех элементов [math]G[/math] и ее не нормальной подгруппе [math]H[/math] перестановок из двух элементов не затрагивающих третий элемент, [math]G/H[/math] не будет являться группой.
[math]\triangleright[/math]

Рассмотрим группу [math]S_3[/math](перестановки трех элементов) и ее не нормальную подгруппу [math]S'_2[/math](перестановки не затрагивающие третий элемент). Рассмотрим множество перестановок [math]S_3/S'_2[/math]:

класс [math]E(abc \rightarrow abc[/math] и [math]abc \rightarrow bac)[/math],

класс [math]A(abc \rightarrow acb[/math] и [math]abc \rightarrow bca)[/math],

класс [math]B(abc \rightarrow сab[/math] и [math]abc \rightarrow cba)[/math].

Это смежные классы для [math]S'_2[/math]. Теперь рассмотрим произведения:

[math]abc \rightarrow acb \in A, \, abc \rightarrow cab \in B: (abc \rightarrow acb)(abc \rightarrow cab)=(abc \rightarrow cba) \Rightarrow AB=B[/math]


[math] abc \rightarrow bca \in A, \, abc \rightarrow cba \in B: (abc \rightarrow bca)(abc \rightarrow cba)=(abc \rightarrow bca) \Rightarrow AB=E[/math].

Противоречие. То есть согласованного с группой умножения нет. [math] \Rightarrow S_3/S'_2[/math] не является группой.
[math]\triangleleft[/math]