Сходимость ряда Фурье в индивидуальной точке — различия между версиями
Komarov (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показано 25 промежуточных версий 7 участников) | |||
Строка 1: | Строка 1: | ||
+ | [[Лемма Римана-Лебега|<<]][[Функции ограниченной вариации|>>]] | ||
+ | |||
{{В разработке}} | {{В разработке}} | ||
− | { | + | В этом параграфе установим ряд результатов, гарантирующих, что <tex>\lim\limits_{n\to\infty} \int\limits_0^\pi \varphi_x(t) D_n(t) dt = 0</tex>, что равносильно <tex>S_n(f, x) \to S</tex>. |
− | + | __TOC__ | |
+ | |||
+ | == Теорема Дини == | ||
{{Теорема | {{Теорема | ||
− | |author=Дини | + | |author= |
− | |statement=<tex>f\in L_1</tex>, <tex> | + | Дини |
− | |proof=<tex> | + | |statement= |
− | <tex>= \int\limits_0^\pi \ | + | <tex>f\in L_1</tex>, <tex> S \in \mathbb{R}</tex>, <tex>\int\limits_0^\pi \frac{|\varphi_x(t)|}{t} dt < +\infty</tex>, где <tex>\varphi_x(t) \stackrel{\mathrm{def}}= f(x + t) + f(x - t) - 2S</tex> . Тогда <tex> S = \lim\limits_{n\to\infty} S_n(f, x)</tex> |
+ | |proof= | ||
+ | <tex>S_n(f, x) - S = \int\limits_0^\pi \varphi_x(t) \frac1{2\pi} \frac{\sin(n + 1/2)t}{\sin t/2} dt</tex> | ||
+ | <tex>= \frac1{2\pi} \int\limits_0^\pi \varphi_x(t) \cos nt dt + \frac1{2\pi}\int\limits_0^\pi \varphi_x(t) \frac{\cos t/2}{\sin t/2} \sin nt dt</tex> | ||
− | По лемме Римана-Лебега, так как <tex>\ | + | По лемме Римана-Лебега, так как <tex>\varphi_x(t)</tex> {{---}} суммируемая, первое слагаемое при <tex>n\to\infty</tex> |
стремится к 0. | стремится к 0. | ||
− | Так как, по условию, <tex>\int\limits_0^\pi \frac{|\ | + | Так как, по условию, <tex>\int\limits_0^\pi \frac{|\varphi_x(t)|}{t} dt < +\infty</tex>, |
− | <tex>\forall \varepsilon > 0 \exists \delta > 0 : \int\limits_0^\delta \frac{|\ | + | <tex>\forall \varepsilon > 0 \exists \delta > 0 : \int\limits_0^\delta \frac{|\varphi_x(t)|}{t} dt < \varepsilon</tex> |
− | Тогда <tex>\left|\int\limits_0^\pi \ | + | Тогда <tex>\left|\int\limits_0^\pi \varphi_x(t) \frac{\cos t/2}{\sin t/2} \sin nt dt \right|</tex> |
− | <tex>\le \int\limits_0^\ | + | <tex>\le \int\limits_0^{\delta} |\varphi_x(t)| \frac{1}{\sin t/2 [\ge t/\pi]} dt + \left| \int\limits_\delta^\pi \varphi_x(t) \frac{\cos t/2}{\sin t/2} \sin nt dt \right|</tex> |
− | |||
− | <tex>\int\limits_0^\delta \le \pi \int\limits_0^\delta \frac{|\ | + | <tex>\int\limits_0^\delta \le \pi \int\limits_0^\delta \frac{|\varphi_x(t)|}{t} dt</tex> |
<tex>\le \pi\varepsilon </tex> по выбору <tex>\delta</tex> и по условиям теоремы. | <tex>\le \pi\varepsilon </tex> по выбору <tex>\delta</tex> и по условиям теоремы. | ||
− | + | <tex>\int\limits_\delta^\pi \xrightarrow[n\to\infty]{} 0 </tex> по лемме Римана-Лебега, так как <tex>\varphi_x(t)</tex> {{---}} суммируемая, а <tex>\frac{\cos t/2}{\sin t/2}</tex> — ограниченная и суммируемая. | |
− | |||
− | |||
}} | }} | ||
− | Выведем некоторые следствия | + | Выведем некоторые следствия: |
+ | |||
+ | === Следствие о четырех пределах === | ||
{{Утверждение | {{Утверждение | ||
|about=следствие 1 (о четырёх пределах) | |about=следствие 1 (о четырёх пределах) | ||
− | |statement=Пусть | + | |statement= |
− | <tex> | + | Пусть точка <tex>x</tex> регулярна, а также существуют <tex>\alpha=\lim\limits_{t\to +0} \frac{f(x+t) - f(x+0)}{t}</tex> и <tex>\beta=\lim\limits_{t\to+0} \frac{f(x-t)-f(x-0)}{t}</tex>. Тогда в этой точке ряд Фурье сходится, его сумма равна <tex>\frac{f(x+0)+f(x-0)}2</tex> |
− | <tex> | ||
− | <tex>\frac{f(x+0)+f(x-0)}2</tex> | ||
|proof= | |proof= | ||
''Примечание'': Очевидно, что все четыре предела будут, если в точке <tex>x</tex> у <tex>f</tex> есть производная. | ''Примечание'': Очевидно, что все четыре предела будут, если в точке <tex>x</tex> у <tex>f</tex> есть производная. | ||
− | Доказательство сводится к проверке условий Дини для <tex>s = \frac{f(x+0) | + | Доказательство сводится к проверке условий Дини для <tex>s = \frac{f(x+0)+f(x-0)}{2}</tex> |
− | <tex>\frac{|\ | + | <tex>\frac{|\varphi_x(t)|}t \le \frac{|f(x + t) - f(x + 0)|}{t} + \frac{|f(x - t) - f(x - 0)|}{t}</tex> |
Первое слагаемое стремится на бесконечности к <tex>\alpha</tex>, второе {{---}} к <tex>\beta</tex>. | Первое слагаемое стремится на бесконечности к <tex>\alpha</tex>, второе {{---}} к <tex>\beta</tex>. | ||
− | Значит, <tex>\frac{|\ | + | Значит, <tex>\ \frac{|\varphi_x(t)|}t</tex> ограничена справа от нуля и суммируема, то есть, теорема Дини применима. |
}} | }} | ||
+ | |||
+ | === Следствие 2 === | ||
{{Утверждение | {{Утверждение | ||
− | |statement=Пусть <tex>x</tex> {{---}} регулярная точка функции и <tex> | + | |statement= |
− | Тогда <tex> | + | Пусть <tex>x</tex> {{---}} регулярная точка функции и <tex>S_n(f, x) \to S</tex>. |
+ | Тогда <tex>S = \frac{f(x+0)+f(x-0)}2</tex> | ||
|proof= | |proof= | ||
<tex>x</tex>{{---}} регулярная точка <tex>\Rightarrow</tex> по следствию теоремы Фейера, | <tex>x</tex>{{---}} регулярная точка <tex>\Rightarrow</tex> по следствию теоремы Фейера, | ||
− | <tex>\ | + | <tex>\sigma_n(f, x) \to \frac{f(x+0)+f(x-0)}{2}</tex> |
Но суммы Фейера {{---}} способ средних арифметических для сумм ряда Фурье. | Но суммы Фейера {{---}} способ средних арифметических для сумм ряда Фурье. | ||
− | Способ средних арифметических регулярен: то есть, если <tex> | + | Способ средних арифметических регулярен: то есть, если <tex>S_n(f, x) \to S</tex>, то и <tex>\sigma_n(f, x) \to S</tex>. |
− | Тогда, по | + | Тогда, по единственности предела, <tex>S=\frac{f(x+0)+f(x-0)}{2}</tex> |
+ | }} | ||
+ | |||
+ | === Следствие 3 === | ||
{{Утверждение | {{Утверждение | ||
− | |statement=<tex>f, g \in C</tex>, <tex>a_n(f)=a_n(g)</tex>, <tex>b_n(f) = b_n(g)</tex>, тогда <tex>f=g</tex> | + | |statement= |
− | |proof=Действительно, из | + | <tex>f, g \in C</tex>, <tex>a_n(f)=a_n(g)</tex>, <tex>b_n(f) = b_n(g)</tex>, тогда <tex>f=g</tex> |
− | единственности предела | + | |proof= |
+ | Действительно, из совпадения коэффициентов Фурье вытекает совпадение сумм Фейера, но в силу принадлежности <tex>C</tex>, <tex>\sigma_n(f, x) \to f(x)</tex>, <tex>\sigma_n(g, x) \to g(x)</tex> для любого <tex> x </tex>. Тогда, сопоставляя с равенством сумм, по единственности предела получаем: <tex> f = g </tex>. | ||
}} | }} | ||
+ | |||
+ | [[Лемма Римана-Лебега|<<]][[Функции ограниченной вариации|>>]] | ||
+ | [[Категория:Математический анализ 2 курс]] |
Текущая версия на 19:39, 4 сентября 2022
Эта статья находится в разработке!
В этом параграфе установим ряд результатов, гарантирующих, что
, что равносильно .Теорема Дини
Теорема (Дини): |
, , , где . Тогда |
Доказательство: |
По лемме Римана-Лебега, так как — суммируемая, первое слагаемое при стремится к 0.Так как, по условию, ,Тогда по выбору и по условиям теоремы. по лемме Римана-Лебега, так как — суммируемая, а — ограниченная и суммируемая. |
Выведем некоторые следствия:
Следствие о четырех пределах
Утверждение (следствие 1 (о четырёх пределах)): |
Пусть точка регулярна, а также существуют и . Тогда в этой точке ряд Фурье сходится, его сумма равна |
Примечание: Очевидно, что все четыре предела будут, если в точке у есть производная.Доказательство сводится к проверке условий Дини для
Первое слагаемое стремится на бесконечности к Значит, , второе — к . ограничена справа от нуля и суммируема, то есть, теорема Дини применима. |
Следствие 2
Утверждение: |
Пусть — регулярная точка функции и .
Тогда |
— регулярная точка по следствию теоремы Фейера,
Но суммы Фейера — способ средних арифметических для сумм ряда Фурье. Способ средних арифметических регулярен: то есть, если Тогда, по единственности предела, , то и . |
Следствие 3
Утверждение: |
, , , тогда |
Действительно, из совпадения коэффициентов Фурье вытекает совпадение сумм Фейера, но в силу принадлежности | , , для любого . Тогда, сопоставляя с равенством сумм, по единственности предела получаем: .