Гильбертовы пространства — различия между версиями
Rybak (обсуждение | вклад) м |
м (rollbackEdits.php mass rollback) |
||
(не показано 9 промежуточных версий 6 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Скалярным произведением''' в действительном линейном пространстве <tex>X</tex> называется функция <tex>\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}</tex>, | + | '''Скалярным произведением''' в действительном линейном пространстве <tex>X</tex> называется функция <tex>\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}</tex>, удовлетворяющая следующим аксиомам: |
# <tex>\langle x, x \rangle \ge 0</tex> и <tex>\langle x, x \rangle = 0 \iff x = 0</tex> | # <tex>\langle x, x \rangle \ge 0</tex> и <tex>\langle x, x \rangle = 0 \iff x = 0</tex> | ||
# <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | # <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | ||
Строка 46: | Строка 44: | ||
Пусть <tex> H_1 </tex> — подпространство в <tex>H</tex>, <tex> H_2 </tex> {{---}} его ортогональное дополнение. Тогда для любого <tex> x \in H </tex> существует единственное представление <tex> x = x_1 + x_2 </tex>, где <tex> x_1 \in H_1, x_2 \in H_2 </tex> и <tex> x_1 \perp x_2 </tex>. | Пусть <tex> H_1 </tex> — подпространство в <tex>H</tex>, <tex> H_2 </tex> {{---}} его ортогональное дополнение. Тогда для любого <tex> x \in H </tex> существует единственное представление <tex> x = x_1 + x_2 </tex>, где <tex> x_1 \in H_1, x_2 \in H_2 </tex> и <tex> x_1 \perp x_2 </tex>. | ||
|proof= | |proof= | ||
− | + | Доказательство из [http://www.apmath.spbu.ru/ru/education/final/question07.pdf] | |
− | {{ | + | |
+ | Положим <tex>d = \rho(x, H_1)</tex>, <tex>d_n=d+\frac1n</tex> и для каждого <tex>n\in\mathbb{N}</tex> найдём <tex>x_n \in H_1</tex> такой, что <tex>\|x-x_n\|<d_n</tex>. | ||
+ | |||
+ | По равенству параллелограмма, <tex>\|2x-(x_n+x_m)\|^2+\|x_m-x_n\|^2 = 2(\|x-x_n\|^2+\|x_m-x\|^2)</tex>. | ||
+ | |||
+ | Так как <tex>\frac{x_n+x_m}{2}\in H_1</tex>, то <tex>\|x-\frac{x_n+x_m}2\|\ge d</tex> или <tex>\|2x-(x_n+x_m)\|^2\ge 4d^2</tex>. | ||
+ | |||
+ | Тогда получаем, что <tex>\|x_m-x_n\|^2\le2(d_n^2+d_m^2)-4d^2</tex>. Но <tex>d_n, d_m \to d</tex>, и потому <tex>\|x_m-x_n\|_{n,m\to\infty}\to0</tex>, то есть, последовательность <tex>\{x_n\}</tex> {{---}} фундаментальная. | ||
+ | |||
+ | Вследствие полноты <tex>H</tex>, существует <tex>x'=\lim x_n</tex>, а так как множество <tex>H_1</tex> замкнуто (по определению подпространства), то <tex>x'\in H_1</tex>. | ||
+ | |||
+ | При этом <tex>\|x-x'\|=\lim \|x-x_n\|</tex> и из <tex>\|x-x_n\|\le d_n</tex> следует, что <tex>\|x-x'\|\le d</tex>. Но так как знак «меньше» невозможен, то <tex>\|x-x'\|=d</tex>. | ||
+ | |||
+ | Теперь положим <tex>x''=x-x'</tex> и покажем, что <tex>x''\in H_2</tex>, то есть, <tex>x'' \perp H_1</tex>. | ||
+ | |||
+ | Возьмём <tex>y\in H_1\setminus \{0\}</tex>. При любом <tex>\lambda</tex> имеем <tex>x'+\lambda y \in H_1</tex>, так что <tex>\|x''-\lambda y\|^2=\|x-(x'+\lambda y)\|^2 \ge d^2</tex>, что можно, воспользовавшись <tex>\|x-x'\|=d</tex>, переписать в форме: | ||
+ | |||
+ | <tex>-\lambda \langle x'',y\rangle-\lambda\langle y,x''\rangle +|\lambda|^2\langle y,y\rangle \ge 0</tex>. | ||
+ | |||
+ | В частности, при <tex>\lambda=\frac{\langle x'',y\rangle }{\langle y,y\rangle }</tex> получаем отсюда: | ||
+ | |||
+ | <tex>-\frac{|\langle x'',y\rangle |^2}{\langle y,y\rangle }-\frac{|\langle x'',y\rangle|^2}{\langle y,y \rangle}+\frac{|\langle x'',y \rangle|^2}{\langle y,y \rangle}\ge 0</tex>, то есть, <tex>|\langle x'',y \rangle|^2 \le 0</tex>, что может быть только лишь в случае <tex>\langle x'',y \rangle=0</tex>. | ||
+ | |||
+ | Итак, возможность представления <tex>x</tex> в форме <tex>x=x'+x''</tex> и соотношение <tex>\|x-x'\|=\rho(x, H_1)</tex> установлены. | ||
+ | |||
+ | Докажем единственность такого представления. В самом деле, если <tex>x=x_1'+x_1''</tex> (<tex>x_1'\in H_1</tex>,<tex>x_1''\in H_2</tex>), то сопоставив это с <tex>x=x'+x''</tex>, получим <tex> x'-x_1'=x_1''-x''</tex>. | ||
+ | |||
+ | Поскольку <tex>x'-x_1' \in H_1</tex>, <tex>x_1''-x''\in H_2</tex>, то <tex>x'-x_1' \perp x_1''-x''</tex>, откуда получаем <tex>x'-x_1' = x_1''-x'' = 0</tex>. | ||
}} | }} | ||
Строка 103: | Строка 128: | ||
неравенство Бесселя | неравенство Бесселя | ||
|statement= | |statement= | ||
− | <tex> \sum \limits_{k=1}^{\infty} | + | <tex> \sum \limits_{k=1}^{\infty} \langle x, e_k \rangle^2 \le \|x\|^2</tex> |
|proof= | |proof= | ||
Для некоторого набора коэффициентов <tex> \beta_k </tex> рассмотрим скалярное произведение: | Для некоторого набора коэффициентов <tex> \beta_k </tex> рассмотрим скалярное произведение: | ||
Строка 109: | Строка 134: | ||
<tex> 0 \le (x - \sum \limits_{k=1}^n \beta_k e_k, x - \sum \limits_{k=1}^n \beta_k e_k) = \|x\|^2 - 2\sum \limits_{k=1}^n \beta_k (x, e_k) + \sum \limits_{k=1}^n \beta_k^2 = </tex> | <tex> 0 \le (x - \sum \limits_{k=1}^n \beta_k e_k, x - \sum \limits_{k=1}^n \beta_k e_k) = \|x\|^2 - 2\sum \limits_{k=1}^n \beta_k (x, e_k) + \sum \limits_{k=1}^n \beta_k^2 = </tex> | ||
− | <tex> = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k^2 - 2(x, e_k)\beta_k) = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k - (x, e_k))^2 - \sum \limits_{k=1}^n | + | <tex> = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k^2 - 2(x, e_k)\beta_k) = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k - (x, e_k))^2 - \sum \limits_{k=1}^n \langle x, e_k \rangle ^2 </tex>. |
− | Теперь, пусть <tex> \beta_k = (x, | + | Теперь, пусть <tex> \beta_k = (x, e_k) </tex>, имеем <tex> 0 \le \|x\|^2 - \sum \limits_{k=1}^n (x, e_k)^2 </tex>, устремив <tex> n </tex> к бесконечности, получим требуемое. |
}} | }} | ||
Строка 119: | Строка 144: | ||
равенство Парсеваля | равенство Парсеваля | ||
|statement= | |statement= | ||
− | <tex>\forall x: \|x\|^2 = \sum\limits_{k=1}^{\infty} \langle x | + | <tex>\forall x: \|x\|^2 = \sum\limits_{k=1}^{\infty} \langle x, e_k \rangle ^2 </tex> тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. |
|proof= | |proof= | ||
Это доказательство (правда, по кускам) тоже есть здесь: [[L_2-теория рядов Фурье]]. | Это доказательство (правда, по кускам) тоже есть здесь: [[L_2-теория рядов Фурье]]. | ||
Строка 128: | Строка 153: | ||
|author=Рисс-Фишер | |author=Рисс-Фишер | ||
|statement= | |statement= | ||
− | Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 | + | Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 < +\infty</tex>. Тогда <tex>\exists ! x \in H : \alpha_i = \langle x, e_i \rangle</tex> и выполняется '''равенство Парсеваля''': <tex>\sum \alpha_i^2(x) = \|x\|^2</tex> |
|proof= | |proof= | ||
И это доказательство тоже здесь есть: [[L 2-теория рядов Фурье#Теорема Рисса-Фишера|Теорема Рисса-Фишера]]. | И это доказательство тоже здесь есть: [[L 2-теория рядов Фурье#Теорема Рисса-Фишера|Теорема Рисса-Фишера]]. | ||
Строка 139: | Строка 164: | ||
Пусть <tex>H</tex> {{---}} сепарабельное. Тогда в <tex> H </tex> существует ортнормированный базис. | Пусть <tex>H</tex> {{---}} сепарабельное. Тогда в <tex> H </tex> существует ортнормированный базис. | ||
|proof= | |proof= | ||
− | |||
− | |||
<tex>\exists A = \{ a_1 \dots a_n \dots \}, \mathrm{Cl} A = H</tex> — счетное всюду плотное. | <tex>\exists A = \{ a_1 \dots a_n \dots \}, \mathrm{Cl} A = H</tex> — счетное всюду плотное. | ||
Текущая версия на 19:38, 4 сентября 2022
Определение: |
Скалярным произведением в действительном линейном пространстве
| называется функция , удовлетворяющая следующим аксиомам:
Пример:
- тут. , то есть множество бесконечных числовых последовательностей, сумма квадратов которых сходится ( ). , сходимость этого ряда и аксиомы скалярного произведения доказаны
В УП выполняется неравенство Шварца :
УП — частный случай нормированных пространств: можно ввести норму как , неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется.
Для нормы, порожденной скалярным произведением выполняется равенство параллелограмма:
.
Определение: |
Гильбертовым пространством называют Банахово пространство, в котором норма порождена скалярным произведением. |
Теорема: |
Пусть — выпуклое замкнутое множество в , тогда . называется элементом наилучшего приближения |
Доказательство: |
Наилучшее приближение в линейных нормированных пространствах |
Определение: |
Говорят, что два элемента | гильбертова пространства перпендикулярны ( ), если
Определение: |
Пусть | — подпространство в , тогда ортогональным дополнением называется .
Теорема: |
Пусть — подпространство в , — его ортогональное дополнение. Тогда для любого существует единственное представление , где и . |
Доказательство: |
Доказательство из [1] Положим , и для каждого найдём такой, что .По равенству параллелограмма, .Так как , то или .Тогда получаем, что . Но , и потому , то есть, последовательность — фундаментальная.Вследствие полноты , существует , а так как множество замкнуто (по определению подпространства), то .При этом и из следует, что . Но так как знак «меньше» невозможен, то .Теперь положим и покажем, что , то есть, .Возьмём . При любом имеем , так что , что можно, воспользовавшись , переписать в форме:. В частности, при получаем отсюда:, то есть, , что может быть только лишь в случае . Итак, возможность представления в форме и соотношение установлены.Докажем единственность такого представления. В самом деле, если Поскольку ( , ), то сопоставив это с , получим . , , то , откуда получаем . |
Лемма (Рисc, о почти перпендикуляре): |
Пусть — НП, а — собственное (то есть не совпадающее с ) подпространство , тогда (где ) |
Доказательство: |
Если — строго подмножество , то существует .
Пусть , тогда , то есть . — замкнутое, следовательно, , то есть получили противоречие и ., тогда , . Рассмотрим Таким образом, для любого . по линейности лежит в так как оно замкнуто, тогда числитель будет больше , а знаменатель — меньше , то есть дробь будет больше . из подобрали из , что не меньше , а тогда и будет не меньше по свойствам инфимума. |
Смысл данной леммы состоит в том, что в произвольном нормированном пространстве для сколь угодно малого и произвольного подпространства найдется элемент, который будет к нему перпендикулярен с точностью до .
Теорема (некомпактность шара в бесконечномерном пространстве): |
Если - бесконечномерное НП, то единичный шар в нем не компактен. |
Доказательство: |
Возьмем , — собственное подпространство , применим лемму Рисса, возьмем , существует , заметим, что окажется в .Продолжаем так же для , опять применим лемму Рисса, существует , будет в . . Процесс никогда не завершится, так как — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в , из которой нельзя выделить сходящуюся подпоследовательность, так как , следовательно, не компактно. |
В Гильбертовых пространствах важно понятие ортонормированной системы точек:
.Рассмотрим для точки
абстрактный ряд Фурье , называют абстрактными коэффициентами Фурье.
Теорема: |
. |
Доказательство: |
Доказательство есть здесь: L_2-теория рядов Фурье. |
Теорема (Бессель, неравенство Бесселя): |
Доказательство: |
Для некоторого набора коэффициентов рассмотрим скалярное произведение:
Теперь, пусть . , имеем , устремив к бесконечности, получим требуемое. |
Интересно рассмотреть, когда для всех
неравенство превращается в равенство.Теорема (равенство Парсеваля): |
тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. |
Доказательство: |
Это доказательство (правда, по кускам) тоже есть здесь: L_2-теория рядов Фурье. |
Теорема (Рисс-Фишер): |
Пусть - ортонормированная система в гильбертовом пространстве , . Тогда и выполняется равенство Парсеваля: |
Доказательство: |
И это доказательство тоже здесь есть: Теорема Рисса-Фишера. |
Можно задаться вопросом: какое топологическое свойство характеризует существование ортонормированного базиса?
Теорема: |
Пусть — сепарабельное. Тогда в существует ортнормированный базис. |
Доказательство: |
— счетное всюду плотное. ОНС строится процедурой Грама-Шмидта. , следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. |