Участник:Yulya3102/Матан3сем — различия между версиями
Bobrov (обсуждение | вклад) (→Характеризация потенциальных векторных полей в терминах интегралов) |
(→Полиномиальная формула) |
||
(не показано 37 промежуточных версий 9 участников) | |||
Строка 1: | Строка 1: | ||
== Основные вопросы == | == Основные вопросы == | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Признак Вейерштрасса === | === Признак Вейерштрасса === | ||
Строка 34: | Строка 23: | ||
из 1) и 2) <tex> \Rightarrow S(x) </tex> непрерывна в <tex> (\cdot) x_0 </tex> | из 1) и 2) <tex> \Rightarrow S(x) </tex> непрерывна в <tex> (\cdot) x_0 </tex> | ||
+ | |||
+ | Где вы вообще такое доказательство нашли? Тут фигня какая-та. Нормальное доказательство есть в Фихтенгольце. | ||
}} | }} | ||
Строка 66: | Строка 57: | ||
|proof= | |proof= | ||
Следует из т. о предельном переходе под знаком производной (прошлый семестр). | Следует из т. о предельном переходе под знаком производной (прошлый семестр). | ||
+ | * <tex> (\lim_{n \to +\infty} f_n) = \lim_{n \to +\infty}(f{'}_n); \ f_n \in C^1[a, b] </tex> | ||
+ | |||
+ | * <tex> f_n \to f </tex> — поточечно на <tex> [a, b]. \ f{'}_n \rightrightarrows \varphi </tex> при <tex> n \to +\infty, x \in [a, b] </tex> | ||
+ | |||
+ | * Тогда <tex> f </tex> — дифф. на <tex> [a, b] \ \forall x \in [a, b] : f{'}(x) = \varphi(x) </tex>. | ||
<tex> \begin{matrix} S_n \rightarrow S \\ S_{n}' \rightrightarrows \Phi \end{matrix} </tex> Тогда <tex> S' = \Phi </tex> | <tex> \begin{matrix} S_n \rightarrow S \\ S_{n}' \rightrightarrows \Phi \end{matrix} </tex> Тогда <tex> S' = \Phi </tex> | ||
Строка 164: | Строка 160: | ||
Пусть есть ряд <tex> \sum a_n(x) b_n(x) </tex>, <tex> x \in X </tex> | Пусть есть ряд <tex> \sum a_n(x) b_n(x) </tex>, <tex> x \in X </tex> | ||
− | 1) частичные суммы ряда равномерно ограничены, т.е. <tex> \exists c_a \ \forall x | \sum_{k = 1}^{n} a_k(x) | \leqslant c_a </tex> | + | 1) частичные суммы ряда <tex>a_n(x)</tex> равномерно ограничены, т.е. <tex> \exists c_a \ \forall x | \sum_{k = 1}^{n} a_k(x) | \leqslant c_a </tex> |
2) <tex> b_n(x) </tex> монотонна по <tex> n </tex> и равномерно сходится к <tex> 0 </tex> | 2) <tex> b_n(x) </tex> монотонна по <tex> n </tex> и равномерно сходится к <tex> 0 </tex> | ||
Тогда <tex> \sum a_n(x) b_n(x) </tex> равномерно сходится на <tex> X </tex>. | Тогда <tex> \sum a_n(x) b_n(x) </tex> равномерно сходится на <tex> X </tex>. | ||
+ | |||
+ | |proof= | ||
+ | Применяя преобразование Абеля | ||
+ | |||
+ | <tex>\sum_{k=n+1}^{n+p}b_k(x)a_k(x) = b_{n+p}(x)\sum_{k = 1}^{n + p}a_k(x)-\sum_{k=n+1}^{n+p-1}(b_{k+1}(x)-b_k(x))\sum_{j=1}^{k}a_j(x)</tex> | ||
+ | |||
+ | В силу равномерной ограниченности частичных сумм ряда <tex>\sum a_k(x)</tex> при некотором <tex>M</tex> | ||
+ | |||
+ | <tex>|\sum_{k = 1}^{n}a_k(x)| \le M \ \forall n \in N, \forall x \in X</tex> | ||
+ | |||
+ | Тогда, используя монотонность <tex>b_k(x)</tex> (по <tex>k</tex>), имеем | ||
+ | |||
+ | <tex>|\sum_{k=n+1}^{n+p}b_k(x)a_k(x)| \le M|b_{n+p}(x)|+M \sum_{k = n + 1}^{n+p-1}|b_{k+1}(x)-b_k(x)|= 2M|b_{n+p}(x)|+M|b_{n+1}(x)|</tex> | ||
+ | |||
+ | Из этого неравенства в силу <tex>b_k \rightrightarrows 0</tex> получаем, что | ||
+ | |||
+ | <tex>\forall \varepsilon > 0 \ \exists n(\varepsilon ) : | ||
+ | |\sum_{k=n+1}^{n+p}b_k(x)a_k(x)| < \varepsilon \ \forall n \ge n(\varepsilon), \forall p \in N, \forall x \in X</tex> | ||
+ | |||
+ | Применяя критерий Коши, получаем, что ряд сходится равномерно на <tex>X</tex>. | ||
}} | }} | ||
Строка 271: | Строка 287: | ||
[Тогда <tex>f</tex> — дифф. при <tex> |z - z_0| < r </tex> и <tex> f'(z) = \sum n a_n (z - z_0)^{n - 1} </tex> ] | [Тогда <tex>f</tex> — дифф. при <tex> |z - z_0| < r </tex> и <tex> f'(z) = \sum n a_n (z - z_0)^{n - 1} </tex> ] | ||
|proof= | |proof= | ||
− | <tex>R = \frac{1}{\overline{lim}\sqrt[n]{|a_n|}}; R_A = \frac{1}{\overline{lim}\sqrt[n]{(n + 1)|a_{n + 1}|}} = R</tex> | + | <tex>R = \frac{1}{\overline{\lim}\sqrt[n]{|a_n|}}; R_A = \frac{1}{\overline{\lim}\sqrt[n]{(n + 1)|a_{n + 1}|}} = R</tex> |
<tex> \frac{f(z + h) - f(z)}{h} = \sum \frac{a_n (z + h - z_0)^n - a_n (z - z0)^n }{h} = \sum a_n \frac{(z + h - z_0) - (z - z_0)^n}{h} </tex> | <tex> \frac{f(z + h) - f(z)}{h} = \sum \frac{a_n (z + h - z_0)^n - a_n (z - z0)^n }{h} = \sum a_n \frac{(z + h - z_0) - (z - z_0)^n}{h} </tex> | ||
Строка 283: | Строка 299: | ||
<tex> \sum h|a_n|r^{n - 1} </tex> — сх. <tex>\Rightarrow</tex> по [[Участник:Yulya3102/Матан3сем#Признак Вейерштрасса|признаку Вейерштрасса]] р. сх. при <tex> |h| < r - |z - z_0| </tex> | <tex> \sum h|a_n|r^{n - 1} </tex> — сх. <tex>\Rightarrow</tex> по [[Участник:Yulya3102/Матан3сем#Признак Вейерштрасса|признаку Вейерштрасса]] р. сх. при <tex> |h| < r - |z - z_0| </tex> | ||
− | <tex> f(z) = lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h} = \sum lim a_n \frac{(z + h - z_0)^n - (z - z_0)^n}{h} = \sum n(z - z_0)^{n - 1} a_n </tex> | + | <tex> f(z) = \lim_{h \rightarrow 0} \frac{f(z + h) - f(z)}{h} = \sum \lim a_n \frac{(z + h - z_0)^n - (z - z_0)^n}{h} = \sum n(z - z_0)^{n - 1} a_n </tex> |
}} | }} | ||
Строка 377: | Строка 393: | ||
Замечание: Для <tex> F : E \rightarrow \mathbb{R}^l </tex> — дифференцируемо в точке <tex> a </tex>; <tex>F'(a) = ({\partial f_i\over\partial x_j})_{i = 1 \ldots l; j = 1 \ldots m} </tex> | Замечание: Для <tex> F : E \rightarrow \mathbb{R}^l </tex> — дифференцируемо в точке <tex> a </tex>; <tex>F'(a) = ({\partial f_i\over\partial x_j})_{i = 1 \ldots l; j = 1 \ldots m} </tex> | ||
|proof= | |proof= | ||
− | <tex>f(a + h) = f(a) | + | <tex>f(a + h) = f(a) + f'(a) \cdot h + o(h)</tex> |
<tex> h := (0, \ldots, 0, t, 0, \ldots, 0) </tex> | <tex> h := (0, \ldots, 0, t, 0, \ldots, 0) </tex> | ||
Строка 474: | Строка 490: | ||
<tex> (\lambda f_i)'(a)h = (\lambda'(a)(h))f_i(a) + \lambda(a)(f'_i(a)h) </tex> — <tex>i</tex>-ая коорд. док. ф-лы; <tex> ]f_i \leftrightarrow f </tex> | <tex> (\lambda f_i)'(a)h = (\lambda'(a)(h))f_i(a) + \lambda(a)(f'_i(a)h) </tex> — <tex>i</tex>-ая коорд. док. ф-лы; <tex> ]f_i \leftrightarrow f </tex> | ||
− | <tex> \lambda(a + h)f(a + h) - \lambda(a)f(a) = (\lambda(a + h) - \lambda(a))f(a + h) + \lambda(a)f(a + | + | <tex> \lambda(a + h)f(a + h) - \lambda(a)f(a) = (\lambda(a + h) - \lambda(a))f(a + h) + \lambda(a)(f(a + h) - f(a)) = |
(\lambda'(a)h + o(h))f(a + h) + \lambda(a)(f'(a)h + o(h)) = </tex> | (\lambda'(a)h + o(h))f(a + h) + \lambda(a)(f'(a)h + o(h)) = </tex> | ||
Строка 591: | Строка 607: | ||
<tex> (a_1 + ... + a_m)^{r + 1} = (a_1 + ... + a_m) \cdot \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_m^{k_{m}} = </tex> | <tex> (a_1 + ... + a_m)^{r + 1} = (a_1 + ... + a_m) \cdot \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_m^{k_{m}} = </tex> | ||
− | <tex> = \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}+1} ... a_m^{k_{m}} + \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} a_2^{k_2 + 1} ... a_m^{k_{m}} + </tex><tex> \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_{m-1}^{k_{m - 1}} a_m^{k_{m + 1 | + | <tex> = \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}+1} ... a_m^{k_{m}} + \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} a_2^{k_2 + 1} ... a_m^{k_{m}} + </tex><tex> \sum \frac{r!}{k_1! ... k_m!} \cdot a_1^{k_{1}} ... a_{m-1}^{k_{m - 1}} a_m^{k_{m} + 1} = </tex> |
<tex> = \sum_{\beta : |\beta| = r + 1; \beta_1 \ge 1} \frac{r! \beta_1}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + \sum_{\beta : |\beta| = r + 1; \beta_2 \ge 1} \frac{r! \beta_2}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + </tex> <ещё <tex> m - k </tex> суммы> = <tex> \sum_{|b| = r + 1} \frac{r! (b_1 + ... + b_m)}{b_1! ... b_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} </tex>; | <tex> = \sum_{\beta : |\beta| = r + 1; \beta_1 \ge 1} \frac{r! \beta_1}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + \sum_{\beta : |\beta| = r + 1; \beta_2 \ge 1} \frac{r! \beta_2}{\beta_1!\beta_2!...\beta_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} + </tex> <ещё <tex> m - k </tex> суммы> = <tex> \sum_{|b| = r + 1} \frac{r! (b_1 + ... + b_m)}{b_1! ... b_m!} \cdot a_1^{\beta_1}...a_m^{\beta_m} </tex>; | ||
Строка 637: | Строка 653: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> r \in \mathbb{N} </tex>, <tex> D </tex> открыто в <tex> \mathbb{R}^n </tex>, <tex> f \in C^{(r)} (D), \ x \in D </tex>. Тогда <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + o(|h|^r), \ h \to \mathbb{O}_n </tex>. | + | Пусть <tex> r \in \mathbb{N} </tex>, <tex> D </tex> открыто в <tex> \mathbb{R}^n </tex>, <tex> f \in C^{(r + 1)} (D), \ x \in D </tex>. Тогда <tex dpi="150"> f(x + h) = \sum_{(k) \leqslant r} \frac{f^{(k)} (x)}{k!} h^k + o(|h|^r), \ h \to \mathbb{O}_n </tex>. |
}} | }} | ||
Строка 888: | Строка 904: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> F: O \subset \mathbb{R}^m \to \mathbb{R}^m, \ F \in C^r(O) </tex>, <tex> F </tex> — обратима и невырождена, <tex> (\forall x \in O \ \det(F'(x))) \neq 0 </tex>. | + | Пусть <tex> F: O \subset \mathbb{R}^m \to \mathbb{R}^m, \ F \in C^r(O) </tex>, <tex> F </tex> — обратима и её производная невырождена, <tex> (\forall x \in O \ \det(F'(x))) \neq 0 </tex>. |
Тогда: | Тогда: | ||
Строка 1201: | Строка 1217: | ||
<tex> \frac{\Phi(y + h) - \Phi(y)}{h} = \int_a^b \frac{f(x, y + h) - f(x, y)}{h} dx = \int_a^b f'_y (x, y + \Theta h) dx; \ \Theta \in [0, 1] </tex> зависит от <tex> x, y </tex> | <tex> \frac{\Phi(y + h) - \Phi(y)}{h} = \int_a^b \frac{f(x, y + h) - f(x, y)}{h} dx = \int_a^b f'_y (x, y + \Theta h) dx; \ \Theta \in [0, 1] </tex> зависит от <tex> x, y </tex> | ||
− | <tex> f'_y </tex> — | + | <tex> f'_y </tex> — непрерывна на <tex> [a, b] \times [c, d] </tex> |
− | <tex> \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y : |x - y| < \delta; \ | | + | <tex> \forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y : |x - y| < \delta; \ |f'_y(x) - f'_y(y)| < \epsilon </tex> — равномерная непрерывность |
− | <tex> | \frac{\Phi(y + h) - \Phi(y)}{h} - \int_a^b f'_y(x, y)dx | | + | <tex> | \frac{\Phi(y + h) - \Phi(y)}{h} - \int_a^b f'_y(x, y)dx | = | \int_a^b f'_y(x, y + \Theta h) - f'_y(x, y)dx | \le </tex> |
<tex> \le \int_a^b | f'_y(x, y + \Theta h) - f'_y(x, y) |dx \le^* \int_a^b \epsilon dx = \epsilon(b - a) </tex> | <tex> \le \int_a^b | f'_y(x, y + \Theta h) - f'_y(x, y) |dx \le^* \int_a^b \epsilon dx = \epsilon(b - a) </tex> | ||
Строка 1224: | Строка 1240: | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | Пусть <tex> O \subset \mathbb{R}^m </tex> — | + | Пусть <tex> O \subset \mathbb{R}^m </tex> — выпуклое, <tex> V </tex> — векторное поле в <tex> O </tex>, гладкое и <tex> \forall x \forall i, j \ \frac{\partial V_i}{\partial x_j} = \frac{\partial V_j}{\partial x_i} </tex>. Тогда <tex> V </tex> — потенциальное. |
|proof= | |proof= | ||
фиксируем <tex> A \in O; \ \gamma [0, 1] \to O; \ t \mapsto A + t * (x - A); \ \gamma' = x - A </tex> | фиксируем <tex> A \in O; \ \gamma [0, 1] \to O; \ t \mapsto A + t * (x - A); \ \gamma' = x - A </tex> | ||
Строка 1242: | Строка 1258: | ||
<tex> \forall c \in [a, b] </tex> — выберем шар <tex> B(\gamma(c), V_c) \subset O </tex> | <tex> \forall c \in [a, b] </tex> — выберем шар <tex> B(\gamma(c), V_c) \subset O </tex> | ||
− | <tex> \tilde \alpha_c := \inf \{ \alpha \in [a, b]; \ \gamma([\alpha, c]) \subset B | + | <tex> \tilde \alpha_c := \inf \{ \alpha \in [a, b]; \ \gamma([\alpha, c]) \subset B (\gamma(c), V_c) \} </tex> |
− | <tex> \tilde \beta_c := \sup \{ \beta \in [a, b]; \ \gamma([c, \beta]) \subset B | + | <tex> \tilde \beta_c := \sup \{ \beta \in [a, b]; \ \gamma([c, \beta]) \subset B (\gamma(c), V_c) \} </tex> |
Пусть <tex> \tilde \alpha_c < \alpha_c < c < \beta_c < \tilde \beta_c </tex> | Пусть <tex> \tilde \alpha_c < \alpha_c < c < \beta_c < \tilde \beta_c </tex> | ||
Строка 1250: | Строка 1266: | ||
<tex> \forall c </tex> мы имеем <tex> (\alpha_c, \beta_c) </tex> — открытое покрытие <tex> [a, b] </tex> и <tex> \exists </tex> конечное подпокрытие | <tex> \forall c </tex> мы имеем <tex> (\alpha_c, \beta_c) </tex> — открытое покрытие <tex> [a, b] </tex> и <tex> \exists </tex> конечное подпокрытие | ||
− | Можно считать <tex> \forall i \ \exists | + | Можно считать <tex> \forall i \ \exists s_i </tex> — которое лежит в <tex> (\alpha_{c_i}, \beta_{c_i}) </tex>, но не лежит в <tex> (\alpha_{c_j}, \beta_{c_j}); \ i \ne j </tex> |
− | <tex> | + | <tex> s_1 < s_2 ... < s_n </tex> |
}} | }} | ||
Строка 1301: | Строка 1317: | ||
Пусть <tex> V </tex> — локально-потенциальное векторное поле в <tex> O </tex>, <tex> \gamma_0, \gamma_1: [a; b] \to O </tex> — связанно гомотопны. Тогда <tex> \int\limits_{\gamma_0} \sum V_i dx_i = \int\limits_{\gamma_1} \sum V_i dx_i </tex>. Тоже верно для петельной гомотопии. | Пусть <tex> V </tex> — локально-потенциальное векторное поле в <tex> O </tex>, <tex> \gamma_0, \gamma_1: [a; b] \to O </tex> — связанно гомотопны. Тогда <tex> \int\limits_{\gamma_0} \sum V_i dx_i = \int\limits_{\gamma_1} \sum V_i dx_i </tex>. Тоже верно для петельной гомотопии. | ||
|proof= | |proof= | ||
− | <tex> \Gamma </tex> — | + | <tex> \Gamma </tex> — гомотопия. <tex> \gamma_u(t) = \Gamma(t, u), \ u \in [0, 1] </tex> |
<tex> \Phi(u) = \int_{\gamma_u} \sum V_i dx_i </tex>. Проверим, что <tex> \Phi </tex> — локальная постоянная | <tex> \Phi(u) = \int_{\gamma_u} \sum V_i dx_i </tex>. Проверим, что <tex> \Phi </tex> — локальная постоянная | ||
Строка 1327: | Строка 1343: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | <tex> \int\limits_0^{\pi/2} \cos^n x dx \underset{n \to + \infty}{\sim} \int\limits_0^{1/\ | + | <tex> \int\limits_0^{\pi/2} \cos^n x dx \underset{n \to + \infty}{\sim} \sqrt{\frac{2}{n}} \int\limits_0^{+\inf} e^{-t^2} dt </tex> |
+ | |proof= | ||
+ | |||
+ | Доказательство в три шага, полностью выписывать много, поэтому здесь только идеи: | ||
+ | |||
+ | 1) <tex>\int\limits_0^{\pi/2} \cos^n x dx \underset{n \to + \infty}{\sim} \int\limits_0^{n^{-\frac{1}{3}}} \cos^{n}x dx</tex> | ||
+ | |||
+ | Доказывается заменой <tex>\cos^n{x} = e^{n\ln{\cos{x}}}</tex> и каким-то подбором нового предела интегрирования, зависящего от n (конспект, стр.143) | ||
+ | |||
+ | 2) Доказываем, что x — точка максимума для <tex>\ln{\cos{x}}</tex>, вместе с этим заменяем по формуле Тейлора <tex>n\ln{\cos{x}}</tex> на <tex>-\frac{nx^2}{2}+o(x^2)</tex> и показываем, что это <tex>o(x^2)</tex> не мешает подставить замену в интеграл. | ||
+ | |||
+ | 3) Делаем замену <tex>t=\sqrt{\frac{n}{2}}x, dx = \sqrt{\frac{2}{n}}dt</tex>, получаем интеграл из условия. | ||
+ | |||
}} | }} | ||
Строка 1341: | Строка 1369: | ||
=== Метод Лапласа вычисления асимптотики интегралов === | === Метод Лапласа вычисления асимптотики интегралов === | ||
+ | |||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> f > 0 </tex> на <tex> (a; b) </tex>, непрерывна, <tex> \int\limits_a^b f = M, \ f(t) \sim L(t - a)^q, \ t \to a, \ q > -1, \ L > 0, \ \varphi </tex> непрерывна, строго убывает, <tex> \varphi(a) - \varphi(t) \sim c(t - a)^p, \ p > 0 </tex>. Тогда <tex> \int\limits_a^b f( | + | Пусть <tex> f > 0 </tex> на <tex> (a; b) </tex>, непрерывна, <tex> \int\limits_a^b f = M, \ f(t) \sim L(t - a)^q, \ t \to a, \ q > -1, \ L > 0, \ \varphi </tex> непрерывна, строго убывает, <tex> \varphi(a) - \varphi(t) \sim c(t - a)^p, \ p > 0 </tex>. Тогда <tex> \int\limits_a^b f(t) e^{A \varphi(t)} dt \underset{A \to + \infty}{\sim} e^{A \varphi(a)} \cdot \frac{1}{p} \cdot \frac{1}{(cA)^{\frac{q + 1}{p}}} \cdot \Gamma(\frac{q + 1}{p}) </tex>. |
− | }} | + | |
+ | |proof= | ||
+ | |||
+ | * В доказательстве используется прием: при <tex>q > 1, p > 0, A > 0, s > 0</tex> в интеграле <tex>\int\limits_0^s t^q e^{-At^p} dt</tex> | ||
+ | |||
+ | * вводим замену <tex>u = At^p, t = (\frac{u}{A})^{1/p}, dt = \frac{u^{1/p-1}}{pA^{1/p}}</tex>. | ||
+ | |||
+ | * Тогда он превращается в <tex>\frac{1}{pA^{\frac{q+1}{p}}} \int\limits_0^{As^p} u^{\frac{q+1}{p} - 1}e^{-u}du</tex>, который при <tex>A\to{+\infty}</tex> стремится к <tex>\frac{1}{pA^{\frac{q+1}{p}}}\Gamma({\frac{q+1}{p}})</tex> | ||
+ | |||
+ | '''Утверждения:''' | ||
+ | |||
+ | 1) <tex>\forall{c\in(a, b)}\ \forall{\varepsilon > 0}\ \exists{A_0}\ \forall{A > A_0}\ \int\limits_a^c{fe^{A\varphi}} \le \int\limits_a^b{fe^{A\varphi}} \le (1 + \varepsilon)\int\limits_a^c{fe^{A\varphi}}</tex> (следствие из теоремы о локализации) | ||
+ | |||
+ | 2) <tex>\forall{\varepsilon > 0}\ \exists{A_0}\ \forall{A > A_0}</tex> | ||
+ | |||
+ | <tex>(1-\varepsilon)\frac{1}{pA^{\frac{q+1}{p}}}\Gamma(\frac{q+1}{p}) \le \int\limits_0^s t^q e^{-At^p} dt \le \frac{1}{pA^{\frac{q+1}{p}}}\Gamma(\frac{q+1}{p})</tex> (следствие из приема выше. Да, читается ужасно) | ||
+ | |||
+ | '''Доказательство''' | ||
+ | |||
+ | Выбираем окрестность точки <tex>a: [a; a+s]</tex> и <tex>\varepsilon</tex> такое, что | ||
+ | |||
+ | <tex>1-\varepsilon < \frac{f(t)}{L(t-a)^q} < 1+\varepsilon</tex> | ||
+ | |||
+ | <tex>1-\varepsilon < \frac{\varphi(a) - \varphi(t)}{c(t-a)^p} < 1+\varepsilon</tex> | ||
+ | |||
+ | Для <tex>A > A_0</tex>, удовлетворяющих двум утверждениям выше, выполняется: | ||
+ | |||
+ | <tex>\int\limits_a^b f(t)e^{A\varphi(t)} dt \le (1+\varepsilon)\int\limits_a^{a+s}L(t-a)^q \cdot e^{A\varphi(a)} \cdot e^{-A(\varphi(a)-\varphi(t)} dt \le</tex> | ||
+ | |||
+ | <tex>\le (1+\varepsilon)Le^{A\varphi(a)}\int\limits_0^s{\tau^q}e^{-Ae^{c(1-\varepsilon)\tau^p}}d\tau</tex> | ||
+ | |||
+ | По утверждению 2 это меньше или равно <tex>\frac{1+\varepsilon}{(1-\varepsilon)^{\frac{q+1}{p}}}\cdot L\cdot [e^{A \varphi(a)} \frac{1}{p(cA)^{\frac{q + 1}{p}}} \Gamma(\frac{q + 1}{p})]</tex>. В квадратных скобках то, что нам нужно. | ||
+ | |||
+ | Используя другие части неравенства, находим, что <tex>\int\limits_a^b f(t)e^{A\varphi(t)} dt \ge \frac{1-\varepsilon}{(1+\varepsilon)^{\frac{q+1}{p}}}\cdot L\cdot [e^{A \varphi(a)} \frac{1}{p(cA)^{\frac{q + 1}{p}}} \Gamma(\frac{q + 1}{p})]</tex>. | ||
+ | |||
+ | Вроде доказали. | ||
+ | |||
+ | }} | ||
=== Теорема Вейерштрасса о приближении функций многочленами === | === Теорема Вейерштрасса о приближении функций многочленами === | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> f </tex> непрерывна на <tex> [a; b] </tex>. Тогда существует многочлен <tex> P_n(x), \ n = 1, 2 ... </tex>, что <tex> \forall x \in [a; b] \ P_n(x) \to f(x) </tex>. | + | Пусть <tex> f </tex> непрерывна на <tex> [a; b] </tex>. Тогда существует многочлен (последовательность многочленов?) <tex> P_n(x), \ n = 1, 2 ... </tex>, что <tex> \forall x \in [a; b] \ P_n(x) \to f(x) </tex>. |
|proof= | |proof= | ||
<tex> [a, b] \subset [a - 1, b + 1] = [a_1, b_1] </tex> // Можно считать <tex> \begin{matrix} [a, b] = [\frac{1}{3}, \frac{2}{3}] \\ [a_1, b_1] = [0, 1] \end{matrix} </tex> | <tex> [a, b] \subset [a - 1, b + 1] = [a_1, b_1] </tex> // Можно считать <tex> \begin{matrix} [a, b] = [\frac{1}{3}, \frac{2}{3}] \\ [a_1, b_1] = [0, 1] \end{matrix} </tex> | ||
Строка 1378: | Строка 1444: | ||
<tex> \Gamma(x + 1) = \int_0^{+\infty} t^x e^{-t} dt =_{t = ux; \ dt = xdu} \ </tex><tex>\ x^{x + 1} \int_0^{+\infty} u^x e^{-ux} du = x^{x + 1} \int_0^{+\infty} e^{-x(u - \ln u)} du \sim </tex> | <tex> \Gamma(x + 1) = \int_0^{+\infty} t^x e^{-t} dt =_{t = ux; \ dt = xdu} \ </tex><tex>\ x^{x + 1} \int_0^{+\infty} u^x e^{-ux} du = x^{x + 1} \int_0^{+\infty} e^{-x(u - \ln u)} du \sim </tex> | ||
− | // <tex> \varphi(u) = -( | + | // <tex> \varphi(u) = -(u - \ln u) </tex> |
− | // <tex> \varphi' = -(1 - \frac{1}{ | + | // <tex> \varphi' = -(1 - \frac{1}{u}); u = 1; \varphi'(u) = 0 - (\cdot) max </tex> |
− | // <tex> \varphi'' = -\frac{1}{ | + | // <tex> \varphi'' = -\frac{1}{u^2}; \ \varphi''(1) = -1 </tex> |
<tex> \sim x^{x + 1} e^{-x} \sqrt{\frac{2\pi}{x}} \cdot \frac{1}{\sqrt{1}} \cdot 1 </tex> | <tex> \sim x^{x + 1} e^{-x} \sqrt{\frac{2\pi}{x}} \cdot \frac{1}{\sqrt{1}} \cdot 1 </tex> | ||
}} | }} | ||
+ | <tex> \int_{\gamma} \sum V_i dx_i = \int_{\gamma_1} \sum V_i dx_i</tex> | ||
== Определения и факты == | == Определения и факты == | ||
− | + | [[Участник:Yulya3102/Матан3сем/Определения|Перемещено, а то из-за большого размера страница не грузится на некоторых телефонах]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Текущая версия на 14:50, 29 января 2015
Основные вопросы
Признак Вейерштрасса
Теорема: |
Рассмотрим ряд , где ( — метрическое пространство). Пусть есть ряд — сходящийся, такой, что .
Тогда равномерно сходится на . |
Доказательство: |
Теорема Стокса--Зайдля для рядов
Теорема: |
Пусть ряд , где ( — метрическое пространство), равномерно сходится на . Пусть есть точка , такая, что все непрерывны в . Тогда непрерывна в точке . |
Доказательство: |
1) — непрерывна в2) из 1) и 2) Где вы вообще такое доказательство нашли? Тут фигня какая-та. Нормальное доказательство есть в Фихтенгольце. непрерывна в |
Теорема об интегрировании функционального ряда
Теорема: |
Пусть ( — множество непрерывных функций), равномерно сходится на , .
Тогда 2) Правая часть имеет смысл — это следует из доказательства. 1) — непрерывно интеграл имеет смысл. |
Доказательство: |
Сделаем предельный переход по |
Теорема о дифференцировании функционального ряда
Теорема: |
Пусть ( — множество непрерывно дифференцируемых функций).
1) поточечно сходится на2) Тогда равномерно сходится при и . |
Доказательство: |
Следует из т. о предельном переходе под знаком производной (прошлый семестр).
|
Теорема о почленном предельном переходе в суммах
Теорема: |
Пусть , .
1) 2) равномерно сходится наТогда 1) 2) — сходится |
Доказательство: |
1) — имеет предел
Берём из р. сх-ти
При данном Выберем так близко к , чтобы— непр. равномерно в — р. сх. на Утв. 2 следует из т. 1. Стокса-Зайдля для рядов |
Теорема о перестановке пределов
(
)Теорема: |
Пусть , [или даже — предельная точка ]
1) сходится равномерно к при2) Тогда 1) 2) |
Доказательство: |
Тогда: Условие 1: р. сх. к сумме
Условие 2: (при проявить сообразительность)
по теореме о почл. пр. переходе в суммах: 1) — сх., т.е.2) |
Замечание: верна теорема
при условии 1:
— и этот предел равномерный
Признак Дирихле равномерной сходимости функционального ряда
Теорема: |
Пусть есть ряд ,
1) частичные суммы ряда равномерно ограничены, т.е.2) Тогда монотонна по и равномерно сходится к равномерно сходится на . |
Доказательство: |
Применяя преобразование Абеля
В силу равномерной ограниченности частичных сумм ряда при некотором
Тогда, используя монотонность (по ), имеем
Из этого неравенства в силу получаем, чтоПрименяя критерий Коши, получаем, что ряд сходится равномерно на . |
Метод суммирования Абеля
Теорема: |
Пусть сходится. Рассмотрим функцию . Тогда . |
Доказательство: |
по признаку Абеля равномерно сх-ся — |
Теорема о круге сходимости степенного ряда
Теорема: |
Пусть — произвольный степенной ряд — комплексная переменная или
Возможны три случая: 1) ряд сходится2) сходится только при3) присходится расходится — радиус сходимости |
Доказательство: |
Нужно доказать абсолютную сходимость
1) при всех ряд сходится абсолютно2) при , т.е. ряд сходитсяпри расходится (слагаемые )3) — конеченряд сходится абсолютно расходится (слагаемые ) |
Теорема о равномерной сходимости и непрерывности степенного ряда
Теорема: |
Пусть ряд — радиус сходимости. Тогда:
1) Для 2) В круге ряд равномерно сходится в круге сумма ряда — непрерывна. |
Доказательство: |
— сходится! т.к. — абс. сх.
(2) фиксируем В ; Возьмём ряд р. сх. и слагаемые непр. сумма непрерывна. |
Линейные и комплексно линейные отображения. Уравнения Коши--Римана
Лемма: |
Пусть — комплексно дифференцируема в точке . Тогда, если , отображение дифференцируемо в и выполнены соотношения:
(уравнения Коши-Римана) |
Доказательство: |
Википедия [1] |
Теорема о почленном дифференцировании степенного ряда
Теорема: |
Ряд
Ряд Тогда: 1) радиус сх-ти [Тогда . 2) при — дифф. при и ] |
Доказательство: |
Проверим р. сх. ;Тогда:
признаку Вейерштрасса р. сх. при — сх. по |
Экспонента, синус, косинус. Свойства.
1.1)
1.2)
1.3)
1.4)
Теорема: |
Доказательство: |
|
- Следствие: — ни при каких
2.1)
2.2)
2.3)
2.4)
2.5) Пусть
2.6)
2.7)
Единственность производной
Теорема: |
Производный оператор единственный. |
Доказательство: |
Покажем, что значение производного оператора определения. По линейности имеем: на каждом векторе определяется однозначно. По линейности оператора . Зафиксируем . Возьмём достаточно малое по модулю (достаточно взять , где ) и подставим вместо в равенство из. Перенеся в левую часть и разделив на , получим:, то есть . |
Лемма о покоординатной дифференцируемости
Лемма: |
Дифференцируемость отображения в точке равносильна одновременной дифференцируемости всех его координатных функций в точке . |
Доказательство: |
Пусть из определения производного оператора покоординатно: дифференцируемо в точке . Запишем равенство. Координатные функции Обратно, пусть линейного оператора являются линейными, а непрерывность и равенство нулю в нуле отображения равносильно такому же свойству его координатных функций . Поэтому для выполнено определение дифференцируемости. дифференцируемы в точке . Тогда для каждого существует линейная функция и функция , непрерывная и равная нулю в нуле, для которых выполняется равенство. Следовательно, для выполняется равенство из определения производного оператора, где — оператор с координатными функциями . |
Необходимое условие дифференцируемости.
Теорема: |
Пусть — дифференцируемо в точке
Тогда Замечание: Для и матрица Якоби — дифференцируемо в точке ; |
Доказательство: |
— это св-во дифф-ти в из |
Достаточное условие дифференцируемости
Теорема: |
Пусть , в шаре существуют все и все производные непрерывны в точке . Тогда дифференцируема в точке |
Доказательство: |
// — По теореме Лагранжа // // — средняя точка
где: по модулю; при |
Лемма об оценке нормы линейного оператора
Лемма: |
Пусть — линейный оператор. Тогда , где ( — элементы его матрицы) |
Доказательство: |
, т.е. если , то тривиально (КБШ)
|
Дифференцирование композиции
Теорема: |
— дифф. в — дифф. в ; Тогда: — дифф. в |
Доказательство: |
1. 2.
|
Дифференцирование «произведений»
Лемма: |
Пусть , , ; — дифференцируемые в . тогда:
1) 2) (здесь — скалярное произведение и ) |
Доказательство: |
1. Введём координатную ф-ю — -ая коорд. док. ф-лы;
— ограничена.
2. лин. дифф.Замечание: |
Теорема Лагранжа для векторнозначных функций
Теорема: |
— непр. на и дифф. на
Тогда: |
Доказательство: |
// Если ехать быстро и криво
при // — длина дуги; — длина хорды |
Экстремальное свойство градиента
Теорема: |
— направление Тогда Более того: указывает напр-е наискорейшего возр. ф-и, а самого быстрого убывания. напр. равенство достижимо для |
Доказательство: |
// // |
Независимость частных производных от порядка дифференцирования
Теорема: |
— опр. в окр. , дифф. в окр. Тогда эти две частные производные равны. и — непр. в |
Доказательство: |
— задано при фикс.
— средние точки
|
- Замечание 1:
Аналогично:
— опр. в окр. — непр. в
- Замечание 2:
Если
сущ. част. пр. -того порядка в окр. и все они непр. вДля
— индексыи
— которые получаются из набора перестановкаВерно:
Полиномиальная формула
Лемма: |
Если , — мультииндекс, - вектор, то |
Доказательство: |
Индукция по
<ещё суммы> = ; — это ограничение можно убрать, т.к. все слагаемые с имеют нулевой индекс |
- Замечание 1
- Замечание 2
Лемма о дифференцировании «сдвига»
Лемма: |
Пусть , открыто в , , так, что . Также . Пусть . Тогда верно . |
Доказательство: |
Доказательства нет, есть пример, из которого можно придумать доказательство по индукции, наверное. |
Многомерная формула Тейлора (с остатком в форме Лагранжа и Пеано)
Лагранж:
Теорема: |
Пусть , открыто в , . Тогда существует такое , что . |
Доказательство: |
Разложили по одномерной формуле Тейлора в точке 0, используя лемму о дифференцировании сдвига, — получили то, что нужно. |
Также можно обозначить точки через
и , тогда формула запишется в виде .Пеано:
Теорема: |
Пусть , открыто в , . Тогда . |
Теорема о пространстве линейных отображений
Теорема: |
|
Доказательство: |
1. очевидно // для2. очевидно, св-ва [2] . Википедия3. \\\\ |
Теорема Лагранжа для отображений
Теорема: |
Тогда: |
Доказательство: |
// |
Теорема об обратимости линейного отображения, близкого к обратимому
Теорема: |
Пусть ( — множество обратимых линейных операторов в ), . Тогда:
1) ;2) 3) ; . |
Доказательство: |
Лемма: пусть Тогда — обратим,Это правда, потому что , значит, — биекция(пусть )Неравенство получается из заменойСамо доказательство:
По условию теоремы множитель в последней части больше нуля, поэтому по лемме обратим, по этой же лемме выполнено 2).
|
Теорема о непрерывно дифференцируемых отображениях
Теорема: |
Пусть , где открыто, дифференцируемо на . Тогда эквивалентны утверждения:
— непрерывна. |
Доказательство: |
? непр. в
выберем ; при
— непрерывна. — нормированный базис
Точно также: |
Необходимое условие экстремума. Теорема Ролля
Необходимое условие экстремума:
Теорема: |
Пусть открыто — точка лок. экстремума. — дифф. на .
Тогда (т.е. ) |
Доказательство: |
Меняем | на , по теореме Ферма из первого семестра . Из этого следует, что все частные производные в точке a равны нулю, что нам и было нужно.
Теорема Ролля:
Теорема: |
Пусть компакт , дифференцируемо на , на (граница ), — непр. на .
Тогда существует . |
Доказательство: |
Если Если нет, то по постоянна на , то утверждение очевидно. теореме Вейерштрасса на компакте достигает наибольшего или наименьшего значения в какой-то точке, а по необходимому условию экстремума в этой точке градиент равен нулю. |
Лемма об оценке квадратичной формы и об эквивалентных нормах
Утверждение: |
1) Если квадратичная форма положительно определена, то существует такое , что для всех 2) Пусть — норма. Тогда . |
1) (Сфера теореме Вейерштрасса ) — компакт по
2) — по т. Вейерштрасса (т.к. — непр.)
|
Достаточное условие экстремума
Теорема: |
Пусть открыто в , дифф. на — стационарная точка (то есть ). — кв. форма.
Тогда справедливы следующие утверждения: 1) Если положительно определённая, то — точка минимума (локального).2) Если отрицательно определённая, то — точка максимума (локального).3) Если 4) Если не знакоопределённая, то — не точка экстремума. положительно/отрицально опр. вырожденное, то (?) может быть макс., мин. требуется исследование |
Доказательство: |
// Выберем так, чтобы при
Таким образом точка локального минимума— не знакоопределён.
— при эта сумма из '?' б.м по модулю при малых |
Лемма о почти локальной инъективности
Лемма: |
Пусть — диффеоморфизм, . Тогда |
Доказательство: |
1) — линейное.
2) // при |
Теорема о сохранении области
Теорема: |
Пусть , где открыто — диффеоморфизм в , . Тогда открыто.
1. Если 2. Непрерывность — лин. связное и — непр. — лин. связное — откр. [в ] |
Доказательство: |
— внутрення точка ?
при
Возьмем (S — сфера, т. е. граница шара)Утверждение: Т.е.:
— внутри В точке .На сфере : — имеет внутри шара пов точке минимума (у системы есть только тривиальное решение) |
Теорема о диффеоморфизме
Теорема: |
Пусть , — обратима и её производная невырождена, .
Тогда: 1) 2) |
Доказательство: |
1) — открытое Пусть Пусть — открытое, тогда — открытое.
Возьмём из леммы.Пусть
Можно считать, что близко к , так что
2) — любое. (без доказательства) |
Теорема о локальной обратимости
Теорема: |
Пусть , где открыто;
Тогда — диффеоморфизм ( или — сужение отображения на множество ). |
Доказательство: |
Нужно проверить лишь: — обратима[так как можно считать что на открыто и определено на открытом множестве и дифференцируемо по предыдущим теоремам]// Это какая-то хрень, к тому же она в конце не доказана. Надо проверить, что , тогда отображение будет биекцией.
|
- Замечание
— нужно для дифференцируемости.
— не дифференцируемо в нуле
Теорема о неявном отображении
Теорема: |
Пусть , где открыто, . Пусть известно, что невырождено ( ). Тогда:
1) существуют открытые , и существует единственное , чтоРаньше тут был забыт минус! 2) |
Доказательство: |
Пусть .
.
По теореме о локальной обратимости — такая, что — диффеоморфизм в данной окрестности.Тогда существует обратное отображение .Почти очевидно, что Берем производную — получаем 2): . |
Теорема о задании гладкого многообразия системой уравнений
Теорема: |
Пусть (гладкое многообразие), .
Эквивалентные утверждения: 1) — простое -мерное многообразие2) и существуют функции класса , для которых выполняются условия:2.1) 2.2) — линейно независимые |
Доказательство: |
— параметризация — матрица — реализуется на первых степенях
Очевидно: — невырожденно.
— диффеоморфизм на взаимно однозначное отображение на
— открыто в — реал. как — откр. в
|
Необходимое условие относительного локального экстремума
Теорема: |
Пусть , где открыто, . Пусть имеет в точке локальный относительный экстремум. Тогда , что
|
Доказательство: |
Пусть ранг реализуется на столбцах . Переобозначим .По теореме о неявном отображении: — гл. параметризация ; Точка — лок. экстремум . — необходимое усл. экстремума в матр. форме.
При таком |
Вычисление нормы линейного оператора с помощью собственных чисел
Теорема: |
Пусть . Тогда — собственное число . |
Доказательство: |
Простейшие свойства интеграла векторного поля по кусочно-гладкому пути
1) Линейность по векторному полю:
.— по линейному скалярному произведению
2) Аддитивность при дроблении пути:
.
3) Замена параметра: если
— гладкая, , ,Тогда
.
4) Пусть
— произведение путей:
то
.\\ заменить параметр
— противоположный путь (в обратную сторону)
5) Оценка интеграла:
Теорема: |
, где — длина пути.
|
Доказательство: |
Обобщенная формула Ньютона--Лебница
Теорема: |
Пусть потенциально, — потенциал , — кусочно гладкий.
Тогда . |
Доказательство: |
1) — доказано для гладкого пути\\ \\ 2) — гладкий |
Характеризация потенциальных векторных полей в терминах интегралов
Теорема: |
Если тогда эквиваленты следующие утверждение:
1) V потенциально в 2) Интеграл 3) не зависит от пути (в обл. ) |
Доказательство: |
— формула — очевидно — петля;
— очевидно
Фиксируем точку Возьмём как-нибудь путь из в— потенциал? Докажем, что (аналогично )Выберем
|
Лемма о дифференцировании интеграла по параметру
Лемма: |
Пусть — непрерывна, дифференцируема по при любых и непрерывна на промежутке. Пусть . Тогда дифференцируема и . |
Доказательство: |
зависит от — непрерывна на — равномерная непрерывность
— определение предела. |
Необходимое условие потенциальности гладкого поля. Лемма Пуанкаре
Теорема: |
Пусть — гладкое потенциальное векторное поле в . Тогда |
Доказательство: |
— потенциал, обе части (— непр., т.к. — гладкое) |
Лемма: |
Пусть — выпуклое, — векторное поле в , гладкое и . Тогда — потенциальное. |
Доказательство: |
фиксируем
|
Лемма о гусенице
Лемма: |
Пусть . Тогда существуют дробление и шары , что . |
Доказательство: |
— выберем шар
Пусть мы имеем — открытое покрытие и конечное подпокрытие Можно считать — которое лежит в , но не лежит в |
Лемма о равенстве интегралов по похожим путям
Лемма: |
Пусть — кусочно-гладкие, похожие, — локально-потенциальное векторное поле, . Тогда . |
Доказательство: |
Cуществуют дробление и шарыв существует потенциал векторного поля
Пусть — потенциал в , в выберем потенциалв выберем и т.д.
|
- Замечание
Лемма о похожести путей, близких к данному
Лемма: |
Пусть . Тогда [любые два пути, мало отличающиеся от данного — похожие] такое, что если пути — «близкие» к , то есть , то похожи. |
Доказательство: |
Cуществуют дробление и шары для— компакт в
— удовл. и — гусеница реал. похож. путей |
Равенство интегралов по гомотопным путям
Теорема: |
Пусть — локально-потенциальное векторное поле в , — связанно гомотопны. Тогда . Тоже верно для петельной гомотопии. |
Доказательство: |
— гомотопия. . Проверим, что — локальная постоянная при — постоянна) — равномерно непрерывна. верно |
Потенциальность локально потенциального поля. Следствие о лемме Пуанкаре
Теорема: |
Пусть — односвязная область, — локально потенциальное поле в . Тогда потенциально. |
Доказательство: |
По предыдущей теореме: — потенциально — гомотопия пост. пути |
Следствие: если
— односвязная, , то — потенциально.Асимптотика интеграла $\int_0^{\pi/2}\cos^nx\,dx$, $n\no+\infty$
Теорема: |
Доказательство: |
Доказательство в три шага, полностью выписывать много, поэтому здесь только идеи: 1) Доказывается заменой и каким-то подбором нового предела интегрирования, зависящего от n (конспект, стр.143)2) Доказываем, что x — точка максимума для 3) Делаем замену , вместе с этим заменяем по формуле Тейлора на и показываем, что это не мешает подставить замену в интеграл. , получаем интеграл из условия. |
Лемма о локализации (в методе Лапласа)
Лемма: |
Пусть непрерывна, на строго монотонно убывает, непрерывна. Тогда . |
Доказательство: |
// последняя экспонента с большим показателем |
Метод Лапласа вычисления асимптотики интегралов
Теорема: |
Пусть на , непрерывна, непрерывна, строго убывает, . Тогда . |
Доказательство: |
Утверждения: 1) (следствие из теоремы о локализации)2) (следствие из приема выше. Да, читается ужасно) Доказательство Выбираем окрестность точки и такое, что
Для , удовлетворяющих двум утверждениям выше, выполняется:
По утверждению 2 это меньше или равно . В квадратных скобках то, что нам нужно.Используя другие части неравенства, находим, что Вроде доказали. . |
Теорема Вейерштрасса о приближении функций многочленами
Теорема: |
Пусть непрерывна на . Тогда существует многочлен (последовательность многочленов?) , что . |
Доказательство: |
// Можно считать
Заметим, что: — достигается при
|
- Замечание
— непр. на — многочлен : на
Формула Стирлинга для Гамма-функции
Теорема: |
Доказательство: |
// // // |