Гильбертовы пространства — различия между версиями
Sementry (обсуждение | вклад) м |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Скалярным произведением''' в действительном линейном пространстве <tex>X</tex> называется функция <tex>\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}</tex>, | + | '''Скалярным произведением''' в действительном линейном пространстве <tex>X</tex> называется функция <tex>\langle \cdot, \cdot \rangle : X \times X \to \mathbb{R}</tex>, удовлетворяющая следующим аксиомам: |
# <tex>\langle x, x \rangle \ge 0</tex> и <tex>\langle x, x \rangle = 0 \iff x = 0</tex> | # <tex>\langle x, x \rangle \ge 0</tex> и <tex>\langle x, x \rangle = 0 \iff x = 0</tex> | ||
# <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | # <tex>\langle x, y \rangle = \langle y, x \rangle</tex> | ||
Строка 50: | Строка 48: | ||
Положим <tex>d = \rho(x, H_1)</tex>, <tex>d_n=d+\frac1n</tex> и для каждого <tex>n\in\mathbb{N}</tex> найдём <tex>x_n \in H_1</tex> такой, что <tex>\|x-x_n\|<d_n</tex>. | Положим <tex>d = \rho(x, H_1)</tex>, <tex>d_n=d+\frac1n</tex> и для каждого <tex>n\in\mathbb{N}</tex> найдём <tex>x_n \in H_1</tex> такой, что <tex>\|x-x_n\|<d_n</tex>. | ||
− | По равенству параллелограмма, <tex>\|2x-(x_n+ | + | По равенству параллелограмма, <tex>\|2x-(x_n+x_m)\|^2+\|x_m-x_n\|^2 = 2(\|x-x_n\|^2+\|x_m-x\|^2)</tex>. |
Так как <tex>\frac{x_n+x_m}{2}\in H_1</tex>, то <tex>\|x-\frac{x_n+x_m}2\|\ge d</tex> или <tex>\|2x-(x_n+x_m)\|^2\ge 4d^2</tex>. | Так как <tex>\frac{x_n+x_m}{2}\in H_1</tex>, то <tex>\|x-\frac{x_n+x_m}2\|\ge d</tex> или <tex>\|2x-(x_n+x_m)\|^2\ge 4d^2</tex>. | ||
Строка 64: | Строка 62: | ||
Возьмём <tex>y\in H_1\setminus \{0\}</tex>. При любом <tex>\lambda</tex> имеем <tex>x'+\lambda y \in H_1</tex>, так что <tex>\|x''-\lambda y\|^2=\|x-(x'+\lambda y)\|^2 \ge d^2</tex>, что можно, воспользовавшись <tex>\|x-x'\|=d</tex>, переписать в форме: | Возьмём <tex>y\in H_1\setminus \{0\}</tex>. При любом <tex>\lambda</tex> имеем <tex>x'+\lambda y \in H_1</tex>, так что <tex>\|x''-\lambda y\|^2=\|x-(x'+\lambda y)\|^2 \ge d^2</tex>, что можно, воспользовавшись <tex>\|x-x'\|=d</tex>, переписать в форме: | ||
− | <tex>- | + | <tex>-\lambda \langle x'',y\rangle-\lambda\langle y,x''\rangle +|\lambda|^2\langle y,y\rangle \ge 0</tex>. |
В частности, при <tex>\lambda=\frac{\langle x'',y\rangle }{\langle y,y\rangle }</tex> получаем отсюда: | В частности, при <tex>\lambda=\frac{\langle x'',y\rangle }{\langle y,y\rangle }</tex> получаем отсюда: | ||
Строка 72: | Строка 70: | ||
Итак, возможность представления <tex>x</tex> в форме <tex>x=x'+x''</tex> и соотношение <tex>\|x-x'\|=\rho(x, H_1)</tex> установлены. | Итак, возможность представления <tex>x</tex> в форме <tex>x=x'+x''</tex> и соотношение <tex>\|x-x'\|=\rho(x, H_1)</tex> установлены. | ||
− | Докажем единственность такого представления. В самом деле, если <tex>x=x_1'+x_1''</tex>(<tex>x_1'\in H_1</tex>,<tex>x_1''\in H_2</tex>), то сопоставив это с <tex>x=x'+x''</tex>, получим <tex> x'-x_1'=x_1''-x''</tex>. | + | Докажем единственность такого представления. В самом деле, если <tex>x=x_1'+x_1''</tex> (<tex>x_1'\in H_1</tex>,<tex>x_1''\in H_2</tex>), то сопоставив это с <tex>x=x'+x''</tex>, получим <tex> x'-x_1'=x_1''-x''</tex>. |
Поскольку <tex>x'-x_1' \in H_1</tex>, <tex>x_1''-x''\in H_2</tex>, то <tex>x'-x_1' \perp x_1''-x''</tex>, откуда получаем <tex>x'-x_1' = x_1''-x'' = 0</tex>. | Поскольку <tex>x'-x_1' \in H_1</tex>, <tex>x_1''-x''\in H_2</tex>, то <tex>x'-x_1' \perp x_1''-x''</tex>, откуда получаем <tex>x'-x_1' = x_1''-x'' = 0</tex>. | ||
− | |||
}} | }} | ||
Строка 138: | Строка 135: | ||
<tex> = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k^2 - 2(x, e_k)\beta_k) = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k - (x, e_k))^2 - \sum \limits_{k=1}^n \langle x, e_k \rangle ^2 </tex>. | <tex> = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k^2 - 2(x, e_k)\beta_k) = \|x\|^2 + \sum \limits_{k=1}^n (\beta_k - (x, e_k))^2 - \sum \limits_{k=1}^n \langle x, e_k \rangle ^2 </tex>. | ||
− | Теперь, пусть <tex> \beta_k = (x, | + | Теперь, пусть <tex> \beta_k = (x, e_k) </tex>, имеем <tex> 0 \le \|x\|^2 - \sum \limits_{k=1}^n (x, e_k)^2 </tex>, устремив <tex> n </tex> к бесконечности, получим требуемое. |
}} | }} | ||
Строка 167: | Строка 164: | ||
Пусть <tex>H</tex> {{---}} сепарабельное. Тогда в <tex> H </tex> существует ортнормированный базис. | Пусть <tex>H</tex> {{---}} сепарабельное. Тогда в <tex> H </tex> существует ортнормированный базис. | ||
|proof= | |proof= | ||
− | |||
− | |||
<tex>\exists A = \{ a_1 \dots a_n \dots \}, \mathrm{Cl} A = H</tex> — счетное всюду плотное. | <tex>\exists A = \{ a_1 \dots a_n \dots \}, \mathrm{Cl} A = H</tex> — счетное всюду плотное. | ||
Текущая версия на 19:38, 4 сентября 2022
Определение: |
Скалярным произведением в действительном линейном пространстве
| называется функция , удовлетворяющая следующим аксиомам:
Пример:
- тут. , то есть множество бесконечных числовых последовательностей, сумма квадратов которых сходится ( ). , сходимость этого ряда и аксиомы скалярного произведения доказаны
В УП выполняется неравенство Шварца :
УП — частный случай нормированных пространств: можно ввести норму как , неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется.
Для нормы, порожденной скалярным произведением выполняется равенство параллелограмма:
.
Определение: |
Гильбертовым пространством называют Банахово пространство, в котором норма порождена скалярным произведением. |
Теорема: |
Пусть — выпуклое замкнутое множество в , тогда . называется элементом наилучшего приближения |
Доказательство: |
Наилучшее приближение в линейных нормированных пространствах |
Определение: |
Говорят, что два элемента | гильбертова пространства перпендикулярны ( ), если
Определение: |
Пусть | — подпространство в , тогда ортогональным дополнением называется .
Теорема: |
Пусть — подпространство в , — его ортогональное дополнение. Тогда для любого существует единственное представление , где и . |
Доказательство: |
Доказательство из [1] Положим , и для каждого найдём такой, что .По равенству параллелограмма, .Так как , то или .Тогда получаем, что . Но , и потому , то есть, последовательность — фундаментальная.Вследствие полноты , существует , а так как множество замкнуто (по определению подпространства), то .При этом и из следует, что . Но так как знак «меньше» невозможен, то .Теперь положим и покажем, что , то есть, .Возьмём . При любом имеем , так что , что можно, воспользовавшись , переписать в форме:. В частности, при получаем отсюда:, то есть, , что может быть только лишь в случае . Итак, возможность представления в форме и соотношение установлены.Докажем единственность такого представления. В самом деле, если Поскольку ( , ), то сопоставив это с , получим . , , то , откуда получаем . |
Лемма (Рисc, о почти перпендикуляре): |
Пусть — НП, а — собственное (то есть не совпадающее с ) подпространство , тогда (где ) |
Доказательство: |
Если — строго подмножество , то существует .
Пусть , тогда , то есть . — замкнутое, следовательно, , то есть получили противоречие и ., тогда , . Рассмотрим Таким образом, для любого . по линейности лежит в так как оно замкнуто, тогда числитель будет больше , а знаменатель — меньше , то есть дробь будет больше . из подобрали из , что не меньше , а тогда и будет не меньше по свойствам инфимума. |
Смысл данной леммы состоит в том, что в произвольном нормированном пространстве для сколь угодно малого и произвольного подпространства найдется элемент, который будет к нему перпендикулярен с точностью до .
Теорема (некомпактность шара в бесконечномерном пространстве): |
Если - бесконечномерное НП, то единичный шар в нем не компактен. |
Доказательство: |
Возьмем , — собственное подпространство , применим лемму Рисса, возьмем , существует , заметим, что окажется в .Продолжаем так же для , опять применим лемму Рисса, существует , будет в . . Процесс никогда не завершится, так как — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в , из которой нельзя выделить сходящуюся подпоследовательность, так как , следовательно, не компактно. |
В Гильбертовых пространствах важно понятие ортонормированной системы точек:
.Рассмотрим для точки
абстрактный ряд Фурье , называют абстрактными коэффициентами Фурье.
Теорема: |
. |
Доказательство: |
Доказательство есть здесь: L_2-теория рядов Фурье. |
Теорема (Бессель, неравенство Бесселя): |
Доказательство: |
Для некоторого набора коэффициентов рассмотрим скалярное произведение:
Теперь, пусть . , имеем , устремив к бесконечности, получим требуемое. |
Интересно рассмотреть, когда для всех
неравенство превращается в равенство.Теорема (равенство Парсеваля): |
тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. |
Доказательство: |
Это доказательство (правда, по кускам) тоже есть здесь: L_2-теория рядов Фурье. |
Теорема (Рисс-Фишер): |
Пусть - ортонормированная система в гильбертовом пространстве , . Тогда и выполняется равенство Парсеваля: |
Доказательство: |
И это доказательство тоже здесь есть: Теорема Рисса-Фишера. |
Можно задаться вопросом: какое топологическое свойство характеризует существование ортонормированного базиса?
Теорема: |
Пусть — сепарабельное. Тогда в существует ортнормированный базис. |
Доказательство: |
— счетное всюду плотное. ОНС строится процедурой Грама-Шмидта. , следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. |