Сопряжённый оператор — различия между версиями
Komarov (обсуждение | вклад) м (→Теорема 1) |
м (rollbackEdits.php mass rollback) |
||
(не показано 15 промежуточных версий 9 участников) | |||
Строка 1: | Строка 1: | ||
{{В разработке}} | {{В разработке}} | ||
+ | |||
+ | [[Спектр линейного оператора|<<]][[Компактный оператор |>>]] | ||
Все рассматриваемые далее пространства считаем Банаховыми. | Все рассматриваемые далее пространства считаем Банаховыми. | ||
Строка 64: | Строка 66: | ||
Для доказательства в обратную сторону используем [[Теорема Хана-Банаха#hbnorm|следствие из теоремы Хана-Банаха]]: | Для доказательства в обратную сторону используем [[Теорема Хана-Банаха#hbnorm|следствие из теоремы Хана-Банаха]]: | ||
− | По определению нормы: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>. | + | По определению нормы оператора: <tex> \forall \varepsilon > 0 \, \exists x: \| x \| = 1 \implies \| A \| - \varepsilon < \| Ax \| </tex>. |
<tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>. | <tex> Ax \in F </tex>, по следствию из теоремы Хана-Банаха подберем <tex> \varphi_0 \in F^*, \| \varphi_0 \| = 1: \varphi_0 (Ax) = \| Ax \| </tex>. | ||
Строка 109: | Строка 111: | ||
Построим сопряженный оператор: | Построим сопряженный оператор: | ||
− | По теореме об общем виде линейного функционала в <tex> L_p </tex> | + | По теореме об общем виде линейного функционала в <tex> L_p </tex>, |
<tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями'''). | <tex> \forall \varphi \in E^*, x \in E: \varphi(x) = \int\limits_0^1 y(t) x(t) dt, y \in L_q </tex>, где <tex> \frac 1p + \frac 1q = 1 </tex> (<tex> p </tex> и <tex> q </tex> называются '''сопряженными показателями'''). | ||
Строка 150: | Строка 152: | ||
|statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>. | |statement= <tex> A \in \mathcal{L}(E,F) \implies \operatorname{Cl} R(A) = (\operatorname{Ker} A^*)^\perp </tex>. | ||
|proof = | |proof = | ||
− | <tex>\ | + | <tex>\subset</tex>: |
<tex>\forall \varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = \mathbf{0}</tex>. | <tex>\forall \varphi \in \operatorname{Ker}A^*</tex>, <tex>A^* \varphi = \mathbf{0}</tex>. | ||
Строка 162: | Строка 164: | ||
<tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex> | <tex>\varphi(y_n) = 0, \varphi(y_n) \xrightarrow[]{n \to \infty} \varphi(y) \implies \varphi(y) = 0</tex>, и <tex>\operatorname{Cl}(R(A)) \subset (\operatorname{Ker}(A^*))^\perp</tex> | ||
− | <tex>\ | + | <tex>\supset</tex>: |
Надо показать, что <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>. | Надо показать, что <tex>y \in (\operatorname{Ker}A^*)^\perp \implies y \in \operatorname{Cl} R(A)</tex>. Пусть это не так: <tex> y \notin \operatorname{Cl} R(A)</tex>. | ||
− | Рассмотрим <tex> F_1 = \{ z + ty \mid z \in \operatorname{Cl}(R(A)), t \in \mathbb{R} \} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности <tex>\operatorname{Cl}(R(A)) | + | Рассмотрим <tex> F_1 = \left\{ z + ty \mid z \in \operatorname{Cl}(R(A)), y \notin \operatorname{Cl}(R(A)), t \in \mathbb{R} \right\} </tex>. <tex>F_1</tex> {{---}} линейное множество в силу линейности <tex>\operatorname{Cl}(R(A))</tex>. |
− | |||
− | |||
− | + | Покажем, что <tex>F_1</tex> -- подпространство <tex>F</tex>. Для этого нам осталось проверить замкнутость <tex>F_1</tex>: | |
Пусть <tex>z_n+t_{n}y \to u = z + ty</tex>, хотим убедиться в том, что <tex>u \in F_1</tex>. | Пусть <tex>z_n+t_{n}y \to u = z + ty</tex>, хотим убедиться в том, что <tex>u \in F_1</tex>. | ||
Строка 182: | Строка 182: | ||
Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>. | Таким образом, <tex>\operatorname{Cl}(F_1) = F_1</tex>. | ||
− | Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением | + | Построим на <tex>F_1</tex> фунционал <tex>\varphi_0 : \varphi_0(z+ty) = t </tex>, <tex> \varphi_0(z) = 0</tex>. Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением непрерывности его можно продолжить на <tex>F: \widetilde{\varphi_0} \in F^*</tex>, причем так, что <tex>\widetilde{\varphi_0}\mid _{F_1} = \varphi_0</tex>. |
Рассмотрим значение <tex>\widetilde{\varphi_0}(y)</tex>: | Рассмотрим значение <tex>\widetilde{\varphi_0}(y)</tex>: | ||
− | * С одной стороны, <tex>\widetilde{\varphi_0}(y) = \varphi_0(y) = \ | + | * С одной стороны, <tex>\widetilde{\varphi_0}(y) = \varphi_0(y) = \varphi_0(0 + 1 y) = 1</tex> |
* С другой стороны, <tex>y \in (\operatorname{Ker}A^*)^\perp</tex>, а значит, на любом функционале из ядра <tex>A^*</tex>, в том числе, и на <tex>\widetilde{\varphi_0}</tex>, должно выполняться <tex>\widetilde{\varphi_0}(y) = 0</tex> | * С другой стороны, <tex>y \in (\operatorname{Ker}A^*)^\perp</tex>, а значит, на любом функционале из ядра <tex>A^*</tex>, в том числе, и на <tex>\widetilde{\varphi_0}</tex>, должно выполняться <tex>\widetilde{\varphi_0}(y) = 0</tex> | ||
Строка 206: | Строка 206: | ||
<tex>(\operatorname{Ker}A )^\perp</tex> — набор таких <tex>f</tex>, что если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>. | <tex>(\operatorname{Ker}A )^\perp</tex> — набор таких <tex>f</tex>, что если <tex>Ax=0</tex>, то <tex>f(x)=0</tex>. | ||
− | Надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что <tex>f = \varphi A</tex>. | + | Надо показать, что <tex>f \in R(A^*)</tex>, т.е. проверить, что <tex>f = A^* \varphi = \varphi A</tex>. |
Если найдем <tex>\varphi</tex>, заданный на <tex>R(A)</tex>, то сможем продолжить его на все <tex>F</tex> по теореме Хана-Банаха. | Если найдем <tex>\varphi</tex>, заданный на <tex>R(A)</tex>, то сможем продолжить его на все <tex>F</tex> по теореме Хана-Банаха. | ||
Строка 220: | Строка 220: | ||
<tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>. | <tex>\widetilde{A} : E/_{\operatorname{Ker} A} \to R(A)</tex> — биекция, <tex>R(A)</tex> — замкнуто, <tex>F</tex> — банахово, поэтому <tex>R(A)</tex> — также банахово как подпространство в <tex>F</tex>. Введем норму для <tex>[x] \in E/_{\operatorname{Ker} A}</tex> как <tex>\|[x]\| = \inf\limits_{x\in [x]} \|x\|</tex>. | ||
− | Покажем, что <tex>\widetilde{A}</tex> — ограничен: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|</tex>. | + | Покажем, что <tex>\widetilde{A}</tex> — ограничен: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\|</tex>. Для этого перейдем от классов эквивалентности к их представителям. Так как <tex>\|[x]\| = \inf\limits_{x \in [x]} \|x\| = 1</tex>, найдется <tex>x \in [x]</tex>, такой, что <tex>\|x\| \le 2</tex> (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение <tex>Ax</tex> одно и тоже для любого <tex>x\in[x]</tex>). Тогда: <tex>\|\widetilde{A}\| = \sup\limits_{\|[x]\| = 1} \|\widetilde{A}[x]\| \le \sup\limits_{\|x\| \le 2} \|Ax\| \le \sup\limits_{\|y\| \le 1} \|A(2 y)\| \le 2 \sup\limits_{\|y\| \le 1} \|Ay\| = 2 \|A\|</tex>, так как <tex>\|A\|</tex> был ограничен, <tex>\widetilde{A}</tex> тоже окажется ограниченным. |
− | Тогда по [[Теорема Банаха об обратном операторе#Теорема Банаха о гомеоморфизме|теореме Банаха об гомеоморфизме]] существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1} \| \le m \|y\| < 2m \|y\|</tex>. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого <tex> x' \in A^{-1}(y) </tex>, что <tex> \| x' \| < 2m\| y \| </tex>. | + | Тогда по [[Теорема Банаха об обратном операторе#Теорема Банаха о гомеоморфизме|теореме Банаха об гомеоморфизме]] существует линейный ограниченный оператор <tex>\widetilde{A}^{-1}</tex>, <tex>\| \widetilde{A}^{-1}(y) \| \le m \|y\| < 2m \|y\|</tex>. Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого <tex> x' \in A^{-1}(y) </tex>, что <tex> \| x' \| < 2m\| y \| </tex>. |
<tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex> | <tex>\widetilde{A}^{-1}(y) = \{ x: y = Ax \}</tex> |
Текущая версия на 19:13, 4 сентября 2022
Все рассматриваемые далее пространства считаем Банаховыми.
Определение: |
Аналогично, — пространство, сопряженное к . | — множество линейных непрерывных функционалов над , его называют пространством, сопряженным к .
Естественное вложение
Утверждение: |
Между и существует так называемый естественный изоморфизм, сохраняющий норму точки. |
Введем следующим образом: .— функционал, заданный на , то есть . Тогда само отображает в .линейно: . , откуда . С другой стороны, по следствию из теоремы Хана-Банаха, для любого существует , такое, что выполняются два условия:
Значит, получившееся преобразование , потому получаем, что . — изометрия, , получили естественное вложение в . |
Определение: |
называется рефлексивным, если будет совпадать с при таком отображении. |
Например, гильбертово пространство рефлексивно (следует из теоремы Рисса об общем виде линейного функционала).
не является рефлексивным.
Сопряженный оператор
Пусть оператор
действует из в , и функционал принадлежит .Рассмотрим
.Получили новый функционал
, принадлежащий . .. — сопряженный оператор к .
Теорема: |
Если — линейный ограниченный оператор, то . |
Доказательство: |
Возьмем .. Получили, что , откуда .Для доказательства в обратную сторону используем следствие из теоремы Хана-Банаха: По определению нормы оператора: ., по следствию из теоремы Хана-Банаха подберем . . . Соединяя эти два неравенства, получаем, что Устремляя . к нулю, получаем, что , и, окончательно, . |
Примеры сопряженных операторов
Возьмем любое гильбертово пространство
, .по теореме Рисса об общем виде линейного функционала в существует единственный .
Поскольку также является линейным функционалом , то , где не зависит от .
Имеем отображение
, тогда , и окончательно:.
В гильбертовом пространстве
сопряженный оператор — тот оператор, который позволяет писать равенство выше.
Определение: |
Оператор | в гильбертовом пространстве называется самосопряженным, если
В случае (частный случай ) оператор представляет собой матрицу размером . Сопряженный к оператор получается транспонированием соответствующей матрицы: . Для симметричной матрицы получается , то есть, если — симметричная матрица, то — самосопряженный оператор.
Рассмотрим теперь пространство
.Пусть
— непрерывная функция на , .Интегральный оператор
, действующий из в определяется так: . .Построим сопряженный оператор:
По теореме об общем виде линейного функционала в
,, где ( и называются сопряженными показателями).
.
(по теореме Фубини поменяем порядок интегрирования)
Получили, что
. Обозначим , тогда , аналогично .— интегральный оператор из , имеющий ядро . В частности, если ядро симметрично ( ) и , то .
Ортогональное дополнение
Важное значение имеет ортогональное дополнение (в любом нормированном пространстве):
Определение: |
Пусть Аналогично, если — ортогональное дополнение . , то . | — НП, .
Утверждение: |
. |
Оба включения очевидны по определению. В обратную сторону:
|
Теоремы о множестве значений оператора
Теорема 1
Теорема: |
. |
Доказательство: |
: , . Пусть , тогда ., следовательно, . Теперь, пусть , тогда ., и : Надо показать, что . Пусть это не так: .Рассмотрим . — линейное множество в силу линейности .Покажем, что -- подпространство . Для этого нам осталось проверить замкнутость :Пусть , хотим убедиться в том, что .Если , то выберем , стремящееся к какому-то . Из получаем .Если допустить, что :. — противоречие. Таким образом, .Построим на фунционал , . Он, очевидно, непрерывен, а по теореме Хана-Банаха с сохранением непрерывности его можно продолжить на , причем так, что .Рассмотрим значение :
|
Теорема 2
Теорема: |
. |
Доказательство: |
1) .Рассмотрим .2) Докажем теперь обратное включение: — набор таких , что если , то . Надо показать, что , т.е. проверить, что .Если найдем , заданный на , то сможем продолжить его на все по теореме Хана-Банаха.Рассмотрим произвольное , пусть и .Тогда , то есть , , и , то есть, значение функционала не зависит от того, какой конкретно (при ) был выбран.Тогда можно взять , где — линейный функционал, . Осталось проверить ограниченность на .Рассмотрим , , .— биекция, — замкнуто, — банахово, поэтому — также банахово как подпространство в . Введем норму для как . Покажем, что — ограничен: . Для этого перейдем от классов эквивалентности к их представителям. Так как , найдется , такой, что (по определению инфимума), возьмем его в качестве представителя (мы можем это сделать, так как значение одно и тоже для любого ). Тогда: , так как был ограничен, тоже окажется ограниченным.Тогда по теореме Банаха об гомеоморфизме существует линейный ограниченный оператор , . Замечание: строгое неравенство нам нужно для того, чтобы обеспечить существование такого , что .
, следовательно, существует . , то есть, получили ограниченность , теорема доказана. |
Эти две теоремы являются наиболее общей формой записи условий разрешимости операторных уравнений.
Смысл: рассмотрим уравнение
, где — дано. Для того, чтобы понять, разрешимо ли уравнение, нужно проверить, что . В общем случае, не существует способа это сделать, но можно ограничиться проверкой , и тогда , сопряженный оператор можно построить, ядро поддается конструктивному описанию: .Например,
, . , , — дано. Надо смотреть , то есть .В следующих параграфах мы введем класс бесконечномерных операторов, для которых
— замкнуто, в частности, в этот класс входят интегральные операторы.