Теория Гильберта-Шмидта — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 5 промежуточных версий 3 участников) | |||
Строка 54: | Строка 54: | ||
* Случай 2. <tex>\lambda \notin \mathbb{R}</tex>: | * Случай 2. <tex>\lambda \notin \mathbb{R}</tex>: | ||
− | из неравенства <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> при <tex>x \ne 0</tex> вытекает <tex>\operatorname{Ker}( | + | из неравенства <tex>\|(\lambda\mathcal{I}-\mathcal{A})x\| \ge |\nu|\cdot\|x\| > 0</tex> при <tex>x \ne 0</tex> вытекает <tex>\operatorname{Ker}(\lambda \mathcal{I}-\mathcal{A}) = \{0\}</tex>, так как для <tex>\lambda \notin \mathbb R</tex>, <tex>|\nu| \ne 0</tex>. |
<tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex>. | <tex>\operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A}) = (\operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A})^*)^\bot = \mathcal{H}</tex>. | ||
Строка 91: | Строка 91: | ||
<tex>\implies</tex>: <tex>\lambda \in \rho(\mathcal{A})</tex>, то есть резольвентный оператор определен. | <tex>\implies</tex>: <tex>\lambda \in \rho(\mathcal{A})</tex>, то есть резольвентный оператор определен. | ||
− | <tex>\left\| | + | <tex>\left\| (\lambda I - A)^{-1} (\lambda I - A) x\right\| \le \left\| (\lambda I - A)^{-1} \right\| \| (\lambda I - A) x\|</tex> |
− | Возьмем <tex>m=\frac{1}{\left\| | + | Возьмем <tex>m=\frac{1}{\left\| (\lambda I - A)^{-1} \right\|}</tex>, тогда: |
− | <tex>\| (\lambda I - A) x\| \ge m \left\| | + | <tex>\| (\lambda I - A) x\| \ge m \left\| (\lambda I - A)^{-1} (\lambda I - A) x\right\| \ge m \|x\|</tex> |
<tex>\Longleftarrow</tex>: Существование резольвентного оператора, определенного на <tex> R(\lambda\mathcal{I}-\mathcal{A}) </tex> следует из [[Теорема Банаха об обратном операторе#invlb|одной из теорем об обратных операторах]]. Покажем, что <tex> R(\lambda \mathcal{I} - \mathcal{A}) = \mathcal{H} </tex>. По одному из предыдущих утверждений, <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>. Поскольку <tex> \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\| </tex>, то <tex> \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{ 0 \} </tex>. Так как оператор <tex> \lambda\mathcal{I}-\mathcal{A} </tex> допускает, по условию, априорную оценку решений, то <tex> R(\lambda\mathcal{I}-\mathcal{A}) = \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>, откуда следует, что резольвентный оператор непрерывен и определен на всем <tex> \mathcal{H} </tex>. | <tex>\Longleftarrow</tex>: Существование резольвентного оператора, определенного на <tex> R(\lambda\mathcal{I}-\mathcal{A}) </tex> следует из [[Теорема Банаха об обратном операторе#invlb|одной из теорем об обратных операторах]]. Покажем, что <tex> R(\lambda \mathcal{I} - \mathcal{A}) = \mathcal{H} </tex>. По одному из предыдущих утверждений, <tex>\mathcal{H} = \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) \oplus \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>. Поскольку <tex> \|(\lambda\mathcal{I}-\mathcal{A})x\| \ge m\|x\| </tex>, то <tex> \operatorname{Ker} (\lambda\mathcal{I}-\mathcal{A}) = \{ 0 \} </tex>. Так как оператор <tex> \lambda\mathcal{I}-\mathcal{A} </tex> допускает, по условию, априорную оценку решений, то <tex> R(\lambda\mathcal{I}-\mathcal{A}) = \operatorname{Cl} R(\lambda\mathcal{I}-\mathcal{A})</tex>, откуда следует, что резольвентный оператор непрерывен и определен на всем <tex> \mathcal{H} </tex>. | ||
Строка 106: | Строка 106: | ||
{{Определение | {{Определение | ||
|definition=<tex>m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle</tex> | |definition=<tex>m_- = \inf\limits_{\|x\| = 1} \langle \mathcal{A}x, x\rangle</tex> | ||
+ | |||
<tex>m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle</tex> | <tex>m_+ = \sup\limits_{\|x\| = 1} \langle \mathcal{A}x, x \rangle</tex> | ||
Строка 218: | Строка 219: | ||
Если бы у <tex>\mathcal{A}</tex> было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в <tex>\bigoplus</tex>. Значит, <tex>\operatorname{Ker} \mathcal{A}_0 = \{0\}</tex>. | Если бы у <tex>\mathcal{A}</tex> было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в <tex>\bigoplus</tex>. Значит, <tex>\operatorname{Ker} \mathcal{A}_0 = \{0\}</tex>. | ||
}} | }} | ||
+ | |||
+ | === Разложение резольвенты === | ||
Если <tex>\mathcal{A}</tex> — самосопряжённый компактный оператор, то ОНС базис <tex>\mathcal{H}</tex> можно построить из собственных векторов <tex>\varphi_1, \ldots \varphi_n, \ldots</tex>. | Если <tex>\mathcal{A}</tex> — самосопряжённый компактный оператор, то ОНС базис <tex>\mathcal{H}</tex> можно построить из собственных векторов <tex>\varphi_1, \ldots \varphi_n, \ldots</tex>. |
Текущая версия на 19:33, 4 сентября 2022
В этом параграфе будем иметь дело с Гильбертовым пространством , но над полем .
- (над ):
- (над ):
В конечномерном пространстве
( ) скалярное произведение двух векторов определялось как .В
( ) же, .Комплексное сопряжение добавлено для того, чтобы выполнялась первая аксиома скалярного произведения:
: .Нас будут интересовать только линейные ограниченные операторы
.
Определение: |
Оператор | в гильбертовом пространстве называется самосопряжённым ( ), если .
Посмотрим, что же такое самосопряжённость для конечномерного оператора в . В линейный оператор представляет из себя матрицу .
Утверждение: |
Оператор самосопряжён . |
. |
, , так как если комплексное число совпадает со своим сопряжением, то его мнимая часть равна нулю.
Рассмотрим
, .[ , — самосопряжённый ]
Итого:
.
Утверждение: |
Если — самосопряжённый, а , то . |
Доказательство разбивается на два случая: и
из неравенства при вытекает , так как для , . . |
Теоремы о спектре самосопряженного оператора
Вещественность спектра
Теорема: |
Если — самосопряженный, то . |
Доказательство: |
Проверим, что если , то . , ,, (всюду плотно в ). С другой стороны, неравенство даёт априорную оценку , откуда следует, что — замкнуто.Значит, — биективен на . гарантирует, что обратный оператор ограничен, и, как следствие, непрерывен. Значит, |
Критерии вхождения в спектр и резольвентное множество
Теорема: |
Пусть — самосопряжённый оператор. Тогда
1. 2. |
Доказательство: |
Замечание: второе свойство означает, что спектр самосопряжённого оператора состоит из почти собственных чисел Докажем первый пункт : , то есть резольвентный оператор определен.
Возьмем , тогда:
одной из теорем об обратных операторах. Покажем, что . По одному из предыдущих утверждений, . Поскольку , то . Так как оператор допускает, по условию, априорную оценку решений, то , откуда следует, что резольвентный оператор непрерывен и определен на всем . Второй пункт — просто логическое отрицание первого. : Существование резольвентного оператора, определенного на следует из |
Выше мы убедились, что
Определение: |
|
Очевидно, что
, где :
Аналогично,
Теорема: |
Пусть — самосопряженный оператор. Тогда:
|
Доказательство: |
Пункт 1. Докажем, что из того, что следует, что . Аналогично докажем дляНужно проверять только Пусть . Проверим, что выполняется критерий вхождения в из предыдущей теоремы[неравенство Шварца] Итого: Пункт 2. Докажем, что Проверим критерий принадлежности спектру из предыдущей теоремы.
По определению подбираются ,
, Далее будем использовать обозначение .Так как , мгновенно проверяем, что удовлетворяет аксиомам скалярного произведения, а значит, для выполняется неравенство Шварца:
Надо:
Подставим , :
[по неравенству выше] . Первый множитель стремится к нулю. Проверив ограниченность второго, убедимся, что . |
Теорема о спектральном радиусе
Утверждение: |
Если — самосопряжённый оператор, то |
Ранее мы доказывали, что Если проверить, что , то, по предыдущему утверждению, теорема будет верна:Очевидно, достаточно проверить это утверждение только для . Остальное получится автоматически.
По самосопряжённости: [по неравенству Шварца] [ ] Итого: . Осталось доказать обратное неравенство. |
Если
— компактный, то состоит только из счётного числа собственных чисел . Обозначим за собственные подпространства. В силу самосопряжённости, .Собственные подпространства конечномерны (
). Можно считать, что в каждом из них определён ортонормированный базис.Теорема Гильберта-Шмидта
Теорема (Гильберт, Шмидт): |
Если — самосопряжённый компактный оператор в гильбертовом пространстве , а — его (оператора) собственные подпространства, то |
Доказательство: |
Обозначим за , — ортогональное дополнение до ( ).Нужно проверить, что Элементарно проверяется, что :Проверим, что : любому, , Значит, Рассмотрим — гильбертово пространство, — самосопряжённое, Но все собственные числа Если бы у задействованы в оператор тривиальный было нетривиальное ядро, то оно стало бы собственным подпространством, значит, было бы задействовано в . Значит, . |
Разложение резольвенты
Если
— самосопряжённый компактный оператор, то ОНС базис можно построить из собственных векторов .Любой
можно разложить в ряд Фурье по свойствам гильбертова пространства. Значит,.
Получаем структуру сопряжённого компактного оператора:
( непрерывно обратим) ,.
Можно приравнять коэффициенты:
.(в знаменателе нуля быть не может, потому что ).
.