Алгебра — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Умножение линейных операторов)
м (rollbackEdits.php mass rollback)
 
(не показаны 43 промежуточные версии 7 участников)
Строка 1: Строка 1:
==Умножение линейных операторов==
+
=Умножение линейных операторов=
 
{{Определение
 
{{Определение
 
|definition=Пусть <tex>\mathcal{A} \colon X \to Y </tex> и <tex>\mathcal{B} \colon Y \to Z </tex>, причём <tex>\dim X = n</tex>, <tex>\dim Y = m</tex> и <tex>\dim Z = p</tex>.<br>
 
|definition=Пусть <tex>\mathcal{A} \colon X \to Y </tex> и <tex>\mathcal{B} \colon Y \to Z </tex>, причём <tex>\dim X = n</tex>, <tex>\dim Y = m</tex> и <tex>\dim Z = p</tex>.<br>
Строка 14: Строка 14:
 
Тогда <tex>C = B \cdot A</tex>.
 
Тогда <tex>C = B \cdot A</tex>.
  
|proof=1. <tex>\mathcal{C}e_i = \sum\limits_{k=1}^{p} \gamma_{i}^{k} l_k</tex>, т.е. <tex>\gamma_{i}^{k} = (C_{e_i})^k</tex> по определению матрицы <tex>C</tex>.<br>
+
|proof=1. <tex dpi = "150">\mathcal{C}e_i = \sum\limits_{k=1}^{p} \gamma_{i}^{k} l_k</tex>, т.е. <tex>\gamma_{i}^{k} = (Ce_i)^k</tex> по определению матрицы <tex>C</tex>.<br>
2. <tex>\mathcal{C}e_i = \mathcal{B} (\mathcal{A} e_i) = \mathcal{B} (\sum\limits_{j=1}^{m} \alpha_{i}^{j} h_j) \overset{\mathcal{B} - lin.op}{=} \sum\limits_{j=1}^{m} \alpha_{i}^{j} \mathcal{B}(h_j) = \sum\limits_{j=1}^{m} \alpha_{i}^{j} (\sum\limits_{k=1}^{p} \beta_{j}^{k} l_k) = </tex><tex> \sum\limits_{k=1}^{p} (l_k \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j}) </tex>, тогда из 1 и 2: <br>
+
2. <tex dpi = "150">\mathcal{C}e_i = \mathcal{B} (\mathcal{A} e_i) = \mathcal{B} (\sum\limits_{j=1}^{m} \alpha_{i}^{j} h_j) \overset{\mathcal{B} - lin.op}{=} \sum\limits_{j=1}^{m} \alpha_{i}^{j} \mathcal{B}(h_j) = \sum\limits_{j=1}^{m} \alpha_{i}^{j} (\sum\limits_{k=1}^{p} \beta_{j}^{k} l_k) = </tex><tex dpi = "150"> \sum\limits_{k=1}^{p} (l_k \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j}) </tex>, тогда из 1 и 2: <br>
<tex dpi = "140">\gamma_i^k = \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j} \overset{def}{\Leftrightarrow} C_{[p \times n]} = B_{[p \times m]} \times A_{[m \times n]} </tex>, для <tex>i = 1..n</tex> и <tex>k = 1..p</tex>
+
<tex dpi = "150">\gamma_i^k = \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j} \overset{def}{\Leftrightarrow} C_{[p \times n]} = B_{[p \times m]} \times A_{[m \times n]} </tex>, для <tex>i = 1..n</tex> и <tex>k = 1..p</tex>
 
}}
 
}}
  
==Алгебра линейных операторов. Изоморфизм алгебр.==
+
 
 +
 
 +
[[Категория: Алгебра и геометрия 1 курс]]
 +
 
 +
=Алгебра=
 +
 
 +
{{Определение
 +
|definition=Линейное пространство <tex>X</tex> над <tex>F</tex> называется '''алгеброй''', если в нём задана вторая бинарная операция <tex>\cdot</tex>, и при этом <br>
 +
<tex>\forall x,y,z \in X </tex> и <tex>\forall \alpha \in F \colon</tex><br>
 +
1) <tex>(x \cdot y) \cdot z = x \cdot (y \cdot z)</tex><br>
 +
2) <tex>(x + y) \cdot z = x \cdot z + y \cdot z</tex><br>
 +
3) <tex>z \cdot (x + y) = z \cdot x + z \cdot y</tex><br>
 +
4) <tex>\alpha(x \cdot y) = (\alpha x)y = x(\alpha y)</tex>
 +
}}
 +
 
 +
{{Nota Bene|notabene=Если <tex>\forall x,y \in X \colon x \cdot y = y \cdot x </tex>, то <tex>X</tex> называется '''коммутативной (абелевой)''' алгеброй.}}
 +
 
 +
{{Теорема
 +
|statement=Пусть <tex>X = F_n^n = \{ A_{[n \times n]} = ||\alpha_k^i||, \ \alpha_k^i \in F \}</tex>, тогда <tex>X</tex> - алгебра над <tex>F</tex>. (не абелева)
 +
}}
 +
 
 +
{{Теорема
 +
|statement=<tex>X \times X</tex> - алгебра над <tex>F</tex>, где <tex>X \times X = \{ \mathcal{A} \colon X \Rightarrow X \}</tex>.
 +
}}
 +
 
 +
=Изоморфные алгебры=
 +
 
 +
{{Определение
 +
|definition=Пусть <tex>X</tex> и <tex>Y</tex> - алгебры над <tex>F</tex>. Тогда назовём <tex>X</tex> и <tex>Y</tex> '''изоморфными''', если <tex>\exists \Leftrightarrow</tex> - линейный оператор между алгебрами, такой что <br>
 +
1) <tex> \Leftrightarrow </tex> - взаимооднозначный л.о., т.е.<br>
 +
Для <tex>x \in X, y \in Y \colon \ x \leftrightarrow y</tex><br>
 +
2) <tex> \Leftrightarrow </tex> сохраняет линейную и мультипликативную структуру<br>
 +
1. <tex>x_1 + x_2 \ \leftrightarrow \ y_1 + y_2</tex><br>
 +
2. <tex>\alpha x_1 \ \leftrightarrow \ \alpha y_1</tex><br>
 +
3. <tex>x_1x_2 \ \leftrightarrow \ x_1x_2</tex>
 +
}}
 +
 
 +
{{Теорема
 +
|statement=Алгебры <tex>F_n^n</tex> и <tex>X \times X</tex> - изоморфны.
 +
}}
 +
 
 +
 
 +
[[Категория: Алгебра и геометрия 1 курс]]

Текущая версия на 19:33, 4 сентября 2022

Умножение линейных операторов

Определение:
Пусть [math]\mathcal{A} \colon X \to Y [/math] и [math]\mathcal{B} \colon Y \to Z [/math], причём [math]\dim X = n[/math], [math]\dim Y = m[/math] и [math]\dim Z = p[/math].
Тогда отображение [math]\mathcal{C} \colon X \to Z[/math] называется называется произведением линейных операторов [math]\mathcal{B}[/math] и [math]\mathcal{A} \ (\mathcal{C} = \mathcal{B} \cdot \mathcal{A})[/math], если [math]\forall x \in X \colon \ \mathcal{C}(x) = \mathcal{B}(\mathcal{A}x)[/math]


Лемма:
Если [math]\mathcal{C} = \mathcal{B} \cdot \mathcal{A}[/math], то [math]\mathcal{C}[/math] - линейный оператор, т.е. [math]\mathcal{C} \in X \times Z [/math]
Доказательство:
[math]\triangleright[/math]
УПРАЖНЕНИЕ
[math]\triangleleft[/math]
Теорема:
Пусть [math]\{e_i\}_{i=1}^n[/math] - базис [math]X[/math], [math]\{h_k\}_{k=1}^m[/math] - базис [math]Y[/math], [math]\{l_s\}_{s=1}^p[/math] - базис [math]Z[/math] и пусть [math] A_{[m \times n]} = ||\alpha_k^i||[/math] - матрица [math]\mathcal{A}[/math], [math] B_{[p \times m]} = ||\beta_k^i||[/math] - матрица [math]\mathcal{B}[/math], [math]C_{[p \times n]} = ||\gamma_k^i||[/math] - матрица [math]\mathcal{C}[/math], где [math]\mathcal{C} = \mathcal{B} \cdot \mathcal{A}[/math].
Тогда [math]C = B \cdot A[/math].
Доказательство:
[math]\triangleright[/math]

1. [math]\mathcal{C}e_i = \sum\limits_{k=1}^{p} \gamma_{i}^{k} l_k[/math], т.е. [math]\gamma_{i}^{k} = (Ce_i)^k[/math] по определению матрицы [math]C[/math].
2. [math]\mathcal{C}e_i = \mathcal{B} (\mathcal{A} e_i) = \mathcal{B} (\sum\limits_{j=1}^{m} \alpha_{i}^{j} h_j) \overset{\mathcal{B} - lin.op}{=} \sum\limits_{j=1}^{m} \alpha_{i}^{j} \mathcal{B}(h_j) = \sum\limits_{j=1}^{m} \alpha_{i}^{j} (\sum\limits_{k=1}^{p} \beta_{j}^{k} l_k) = [/math][math] \sum\limits_{k=1}^{p} (l_k \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j}) [/math], тогда из 1 и 2:

[math]\gamma_i^k = \sum\limits_{j=1}^{m} \beta_{j}^{k} \alpha_{i}^{j} \overset{def}{\Leftrightarrow} C_{[p \times n]} = B_{[p \times m]} \times A_{[m \times n]} [/math], для [math]i = 1..n[/math] и [math]k = 1..p[/math]
[math]\triangleleft[/math]

Алгебра

Определение:
Линейное пространство [math]X[/math] над [math]F[/math] называется алгеброй, если в нём задана вторая бинарная операция [math]\cdot[/math], и при этом

[math]\forall x,y,z \in X [/math] и [math]\forall \alpha \in F \colon[/math]
1) [math](x \cdot y) \cdot z = x \cdot (y \cdot z)[/math]
2) [math](x + y) \cdot z = x \cdot z + y \cdot z[/math]
3) [math]z \cdot (x + y) = z \cdot x + z \cdot y[/math]

4) [math]\alpha(x \cdot y) = (\alpha x)y = x(\alpha y)[/math]


N.B.:
Если [math]\forall x,y \in X \colon x \cdot y = y \cdot x [/math], то [math]X[/math] называется коммутативной (абелевой) алгеброй.


Теорема:
Пусть [math]X = F_n^n = \{ A_{[n \times n]} = ||\alpha_k^i||, \ \alpha_k^i \in F \}[/math], тогда [math]X[/math] - алгебра над [math]F[/math]. (не абелева)
Теорема:
[math]X \times X[/math] - алгебра над [math]F[/math], где [math]X \times X = \{ \mathcal{A} \colon X \Rightarrow X \}[/math].

Изоморфные алгебры

Определение:
Пусть [math]X[/math] и [math]Y[/math] - алгебры над [math]F[/math]. Тогда назовём [math]X[/math] и [math]Y[/math] изоморфными, если [math]\exists \Leftrightarrow[/math] - линейный оператор между алгебрами, такой что

1) [math] \Leftrightarrow [/math] - взаимооднозначный л.о., т.е.
Для [math]x \in X, y \in Y \colon \ x \leftrightarrow y[/math]
2) [math] \Leftrightarrow [/math] сохраняет линейную и мультипликативную структуру

1. [math]x_1 + x_2 \ \leftrightarrow \ y_1 + y_2[/math]
2. [math]\alpha x_1 \ \leftrightarrow \ \alpha y_1[/math]
3. [math]x_1x_2 \ \leftrightarrow \ x_1x_2[/math]


Теорема:
Алгебры [math]F_n^n[/math] и [math]X \times X[/math] - изоморфны.