Период и бордер, их связь — различия между версиями
Martoon (обсуждение | вклад) м (→Литература) |
м (rollbackEdits.php mass rollback) |
||
| (не показано 5 промежуточных версий 5 участников) | |||
| Строка 1: | Строка 1: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
==Связь периода и бордера== | ==Связь периода и бордера== | ||
{{Теорема | {{Теорема | ||
| − | |statement= Если у строки длины <tex>n</tex> есть бордер длины <tex>k</tex>, то у нее также имеется период длины <tex>n - k</tex>. | + | |statement= Если у строки длины <tex>n</tex> есть [[Основные определения, связанные со строками#border | бордер]] длины <tex>k</tex>, то у нее также имеется [[Основные определения, связанные со строками#period | период]] длины <tex>n - k</tex>. |
|proof= | |proof= | ||
Пусть дана строка <tex>\alpha</tex>. | Пусть дана строка <tex>\alpha</tex>. | ||
| Строка 27: | Строка 14: | ||
==Свойства периода== | ==Свойства периода== | ||
| − | |||
{{Теорема | {{Теорема | ||
| + | |author=о кратном периоде | ||
|statement= Если у строки есть период длины <tex>k</tex>, то у нее имеется также период длины <tex>kx</tex>, где <tex> x \in N</tex>. | |statement= Если у строки есть период длины <tex>k</tex>, то у нее имеется также период длины <tex>kx</tex>, где <tex> x \in N</tex>. | ||
|proof= | |proof= | ||
| Строка 52: | Строка 39: | ||
}} | }} | ||
| − | |||
Перед доказательством следующей теоремы проверим пару интуитивно понятных утверждений. | Перед доказательством следующей теоремы проверим пару интуитивно понятных утверждений. | ||
| Строка 111: | Строка 97: | ||
== Источники информации == | == Источники информации == | ||
* [[wikipedia:en:Substring | Wikipedia {{---}} Substring ]] | * [[wikipedia:en:Substring | Wikipedia {{---}} Substring ]] | ||
| − | * Lothaire M. Algebraic Combinatorics on Words {{---}} Cambridge University Press, 2002. {{---}} с. 272. {{---}} ISBN 0-521-81220-8 | + | * ''Lothaire M.'' Algebraic Combinatorics on Words {{---}} Cambridge University Press, 2002. {{---}} с. 272. {{---}} ISBN 0-521-81220-8 |
[[Категория:Алгоритмы и структуры данных]] | [[Категория:Алгоритмы и структуры данных]] | ||
[[Категория:Основные определения. Простые комбинаторные свойства слов]] | [[Категория:Основные определения. Простые комбинаторные свойства слов]] | ||
Текущая версия на 19:17, 4 сентября 2022
Содержание
Связь периода и бордера
| Теорема: |
| Доказательство: |
|
Пусть дана строка . Напишем формально определение бордера длины строки : Сделаем замену : |
Свойства периода
| Теорема (о кратном периоде): |
Если у строки есть период длины , то у нее имеется также период длины , где . |
| Доказательство: |
|
Пусть длина строки равна , сама строка — . Доказательство будем вести индукцией по числу .
|
Перед доказательством следующей теоремы проверим пару интуитивно понятных утверждений.
| Лемма (1): |
Пусть строка имеет периоды и , причём . Тогда суффикс и префикс длины имеют период . |
| Доказательство: |
|
Покажем истинность утверждения про префикс; с суффиксом доказательство аналогичное. Требуется показать: Исходя из того, что имеет период , выполнено Также имеет период и из ограничений на верно , поэтому |
| Лемма (2): |
Пусть строка имеет период , и существует подстрока такая, что и имеет период , где . Тогда имеет период . |
| Доказательство: |
|
Пусть , где . Требуется показать: . Зафиксируем и . Заметим, что поскольку , отрезок содержит по меньшей мере целых чисел, так что найдутся . С учётом можем написать [1]. Помимо того , а в таком случае верно и . Теперь воспользуемся следующим фактом: если строка имеет период , то (действительно, без ограничения общности можем сказать, что , и исходя из этого выстроить цепочку равенств ). В виду того, что имеет период , имеют место равенства и . Кроме того имеет период , потому верно . Тогда и . |
| Теорема (Фин и Вильф): |
Если у строки есть периоды и , где , то также является периодом этой строки. |
| Доказательство: |
|
Обозначим . Доказательство будем вести индукцией по . В случае видим что , что соответствует базе, в то время как при выполнено , так что .
|
См. также
Примечания
Источники информации
- Wikipedia — Substring
- Lothaire M. Algebraic Combinatorics on Words — Cambridge University Press, 2002. — с. 272. — ISBN 0-521-81220-8