NP-полнота задачи BH1N — различия между версиями
(→Доказательство принадлежности BH_{1} классу NPH) |
м (rollbackEdits.php mass rollback) |
||
(не показано 17 промежуточных версий 5 участников) | |||
Строка 1: | Строка 1: | ||
− | ==Определение языка < | + | ==Определение языка BH<sub>1N</sub>== |
− | Языком < | + | Языком '''BH<sub>1N</sub>''' (от англ. bounded halting unary) называется множество троек <tex>\langle m, x, 1^{t} \rangle</tex>, где <tex>m</tex> - недетерминированная машина Тьюринга (НМТ), <tex>x</tex> - входные данные и <tex>t</tex> - время в унарной системе счисления, таких, что <tex>m(x)=1</tex> и время работы машины <tex>m</tex> на входе <tex>x</tex> <tex>T(m, x)\le t</tex>: |
− | < | + | |
− | + | '''BH<sub>1N</sub>''' = <tex>\{ \langle m, x, 1^{t} \rangle | m </tex> — НМТ, <tex> m(x)=1, T(m, x)\le t \}</tex>. | |
+ | |||
+ | Также можно рассматривать языки '''BH<sub>1D</sub>''', '''BH<sub>2N</sub>''', '''BH<sub>2D</sub>''', отличающиеся от '''BH<sub>1N</sub>''' только детерминированностью машин Тьюринга (D - детерминированная, N - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная). | ||
==Теорема== | ==Теорема== | ||
− | Язык < | + | Язык '''BH<sub>1N</sub>''' является '''NP'''-полным: '''BH<sub>1N</sub>''' ∈ '''NPC'''. |
+ | |||
==Доказательство== | ==Доказательство== | ||
− | Для того, чтобы доказать [[Понятие_NP-трудной_и_NP-полной_задачи|NP-полноту]] < | + | Для того, чтобы доказать [[Понятие_NP-трудной_и_NP-полной_задачи|'''NP'''-полноту]] '''BH<sub>1N</sub>''' необходимо установить следующие факты: |
− | # < | + | # '''BH<sub>1N</sub>''' ∈ '''NP'''; |
− | + | # '''BH<sub>1N</sub>''' ∈ '''NPH'''. | |
+ | |||
+ | ===Доказательство принадлежности BH<sub>1N</sub> классу NP=== | ||
+ | Будем использовать в качестве сертификата <tex>y</tex> последовательность недетерминированных выборов, которые должна сделать машина <tex>m</tex>, чтобы допустить слово <tex>x</tex>. Длина сертификата меньше, чем <tex>Ct</tex> для некоторого <tex>C</tex>. | ||
− | + | Для проверки сертификата используется программа <tex>R(\langle m, x, 1^{t}\rangle, y)</tex>, эмулирующая работу недетерминированной машины Тьюринга <tex>m</tex> на слове <tex>x</tex>. Там, где у машины <tex>m</tex> было несколько выборов, <tex>R</tex> совершает действие согласно сертификату. При этом замеряется время работы машины <tex>t</tex>. Проверяющая программа может проэмулировать <tex>m</tex>, затратив полиномиальное количество времени. | |
− | |||
Если НМТ <tex>m</tex> допускает слово <tex>x</tex> за время <tex>t</tex>, то существует последовательность действий, которые совершает машина <tex>m</tex>, среди которых могут быть и недетерминированные. Следовательно, существует сертификат <tex>y</tex>. Если же слово не допускается или допускается, но за время, большее <tex>t</tex>, то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина <tex>m</tex>. | Если НМТ <tex>m</tex> допускает слово <tex>x</tex> за время <tex>t</tex>, то существует последовательность действий, которые совершает машина <tex>m</tex>, среди которых могут быть и недетерминированные. Следовательно, существует сертификат <tex>y</tex>. Если же слово не допускается или допускается, но за время, большее <tex>t</tex>, то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина <tex>m</tex>. | ||
− | |||
− | ===Доказательство принадлежности < | + | Все условия принадлежности классу '''NP''' выполнены. |
− | Теперь докажем, что < | + | |
− | Рассмотрим произвольный язык <tex>L</tex> из класса | + | ===Доказательство принадлежности BH<sub>1N</sub> классу NPH=== |
− | Докажем, что <tex>L</tex> сводится по Карпу к < | + | Теперь докажем, что '''BH<sub>1N</sub>''' принадлежит классу '''NPH'''. |
− | Пусть <tex>x \in L</tex>. Тогда <tex>m(x) = 1</tex>. Время работы <tex>m</tex> не больше <tex>p(|x|)</tex>, а значит слово <tex>x</tex> будет допущено машиной <tex>m</tex> за время не больше, чем <tex>p(|x|)</tex>. А тогда тройка <tex>\langle m,x, 1^{p(|x|)}\rangle = f(x)</tex> будет входить в < | + | Рассмотрим произвольный язык <tex>L</tex> из класса '''NP'''. Для него существует машина Тьюринга <tex>m</tex>, такая что <tex>T(m, x)\le p(|x|), L(m) = L</tex>. |
− | Пусть <tex>x \not\in L</tex>. Тогда <tex>m(x) = 0</tex>. Но тогда тройка <tex>\langle m, x, 1^{t}\rangle</tex> не принадлежит < | + | Докажем, что <tex>L</tex> сводится по Карпу к '''BH<sub>1N</sub>'''. Рассмотрим функцию <tex>f(x) = \langle m, x, 1^{p(|x|)}\rangle</tex> по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени <tex>p(|x|)</tex> в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что <tex>x \in L \Leftrightarrow f(x)</tex> ∈ '''BH<sub>1N</sub>'''. |
− | Значит произвольный язык из класса | + | |
+ | Пусть <tex>x \in L</tex>. Тогда <tex>m(x) = 1</tex>. Время работы <tex>m</tex> не больше <tex>p(|x|)</tex>, а значит слово <tex>x</tex> будет допущено машиной <tex>m</tex> за время не больше, чем <tex>p(|x|)</tex>. А тогда тройка <tex>\langle m,x, 1^{p(|x|)}\rangle = f(x)</tex> будет входить в '''BH<sub>1N</sub>''' согласно его определению. | ||
+ | Пусть <tex>x \not\in L</tex>. Тогда <tex>m(x) = 0</tex>. Но тогда тройка <tex>\langle m, x, 1^{t}\rangle</tex> не принадлежит '''BH<sub>1N</sub>''' при любом <tex>t</tex>, а значит и при <tex>t = p(|x|)</tex>. | ||
+ | |||
+ | Значит произвольный язык из класса '''NP''' сводится по Карпу к '''BH<sub>1N</sub>''', то есть '''BH<sub>1N</sub>''' ∈ '''NPC'''. Что и требовалось доказать. | ||
+ | |||
+ | [[Категория:NP]] |
Текущая версия на 19:14, 4 сентября 2022
Содержание
Определение языка BH1N
Языком BH1N (от англ. bounded halting unary) называется множество троек
, где - недетерминированная машина Тьюринга (НМТ), - входные данные и - время в унарной системе счисления, таких, что и время работы машины на входе :BH1N =
— НМТ, .Также можно рассматривать языки BH1D, BH2N, BH2D, отличающиеся от BH1N только детерминированностью машин Тьюринга (D - детерминированная, N - недетерминированная) или системой счисления, в которой представляется время (1 - унарная, 2 - бинарная).
Теорема
Язык BH1N является NP-полным: BH1N ∈ NPC.
Доказательство
Для того, чтобы доказать NP-полноту BH1N необходимо установить следующие факты:
- BH1N ∈ NP;
- BH1N ∈ NPH.
Доказательство принадлежности BH1N классу NP
Будем использовать в качестве сертификата
последовательность недетерминированных выборов, которые должна сделать машина , чтобы допустить слово . Длина сертификата меньше, чем для некоторого .Для проверки сертификата используется программа
, эмулирующая работу недетерминированной машины Тьюринга на слове . Там, где у машины было несколько выборов, совершает действие согласно сертификату. При этом замеряется время работы машины . Проверяющая программа может проэмулировать , затратив полиномиальное количество времени.Если НМТ
допускает слово за время , то существует последовательность действий, которые совершает машина , среди которых могут быть и недетерминированные. Следовательно, существует сертификат . Если же слово не допускается или допускается, но за время, большее , то любая последовательность действий не ведет к допуску слова, а значит нет и последовательности недетерминированных выборов, которые могла бы сделать машина .Все условия принадлежности классу NP выполнены.
Доказательство принадлежности BH1N классу NPH
Теперь докажем, что BH1N принадлежит классу NPH. Рассмотрим произвольный язык
из класса NP. Для него существует машина Тьюринга , такая что . Докажем, что сводится по Карпу к BH1N. Рассмотрим функцию по входным данным возвращающую тройку из машины Тьюринга, попадающую под описанные выше условия, входных данных и времени в унарной системе счисления. Эта функция существует, она своя для каждого языка. Проверим, что ∈ BH1N.Пусть
. Тогда . Время работы не больше , а значит слово будет допущено машиной за время не больше, чем . А тогда тройка будет входить в BH1N согласно его определению. Пусть . Тогда . Но тогда тройка не принадлежит BH1N при любом , а значит и при .Значит произвольный язык из класса NP сводится по Карпу к BH1N, то есть BH1N ∈ NPC. Что и требовалось доказать.