Обсуждение участника:NikitaMarkovnikov — различия между версиями
(не показана 1 промежуточная версия этого же участника) | |||
Строка 4: | Строка 4: | ||
Поша | Поша | ||
− | |statement = Пусть граф <tex> G </tex> имеет <tex>n \geqslant 3</tex> вершин. Если для всякого <tex>k,\, 1 \leqslant k < (n-1)/2</tex> число вершин со степенями, не превосходящими <tex>k</tex>, меньше чем <tex>k</tex>, и для нечетного <tex>n</tex> число вершин степени <tex>(n-1)/2</tex> не превосходит <tex>(n-1)/2</tex>, то <tex> G </tex> {{---}} гамильтонов граф. | + | |statement = Пусть граф <tex> G </tex> имеет <tex>n \geqslant 3</tex> вершин. |
+ | |||
+ | *Если для всякого <tex>k,\, 1 \leqslant k < (n-1)/2</tex>, число вершин со степенями, не превосходящими <tex>k</tex>, меньше чем <tex>k</tex>, и | ||
+ | *Если для нечетного <tex>n</tex> число вершин степени <tex>(n-1)/2</tex> не превосходит <tex>(n-1)/2</tex>, | ||
+ | |||
+ | то <tex> G </tex> {{---}} [[Гамильтоновы графы|гамильтонов]] граф. | ||
|proof = | |proof = | ||
− | Предположим, что теорема неверна | + | Предположим, что теорема неверна. Пусть <tex> G </tex> {{---}} максимальный негамильтонов граф с <tex> n </tex> вершинами, удовлетворяющий условиям теоремы. |
Легко видеть, что добавление любого ребра в граф, обладающий указанными свойствами, приводит к графу, который также обладает этими свойствами. Таким образом, поскольку добавление к <tex> G </tex> произвольного ребра приводит к гамильтонову ребру, любые две несмежные вершины соединимы простой остовной цепью. | Легко видеть, что добавление любого ребра в граф, обладающий указанными свойствами, приводит к графу, который также обладает этими свойствами. Таким образом, поскольку добавление к <tex> G </tex> произвольного ребра приводит к гамильтонову ребру, любые две несмежные вершины соединимы простой остовной цепью. | ||
− | Покажем сначала, что всякая вершина, степень которой не меньше <tex> (n-1)/2 </tex>, смежна с каждой вершиной со степенью, большей чем <tex> (n-1)/2 </tex>. | + | Покажем сначала, что всякая вершина, степень которой не меньше <tex> (n-1)/2 </tex>, смежна с каждой вершиной со степенью, большей чем <tex> (n-1)/2 </tex>. Не умаляя общности, допустим, что <tex> \deg v_{1} \geqslant (n-1)/2 </tex> и <tex> \deg v_{n} \geqslant n/2 </tex>, но вершины <tex> v_{1} </tex> и <tex> v_{n} </tex> не смежны. Тогда существует простая остовная цепь <tex> v_{1} v_{2} \dotsc v_{n} </tex>, соединяющая <tex> v_{1} </tex> и <tex> v_{n} </tex>. Обозначим вершины, смежные с <tex> v_{1} </tex>, через <tex> v_{{i}_{1}}, \dotsc,v_{{i}_{k}} </tex>, где <tex> k = \deg v_{1} </tex> и <tex> 2=i_{1} < i_{2} < \dotsc < i_{k} </tex>. [[Файл: Graph-Posha.png|380px|thumb|right|]] Ясно, что вершина <tex> v_{n} </tex> не может быть смежной ни с одной вершиной из <tex> G </tex> вида <tex> v_{{i}_{j-1}} </tex>, поскольку тогда в <tex> G </tex> был бы гамильтонов цикл <tex> v_{1} v_{2} \dotsc v_{{i}_{j-1}} v_{n} v_{n-1} \dotsc v_{{i}_{j}} v_{1} </tex>. |
Далее, так как <tex> k \geqslant (n-1)/2 </tex>, то <tex> n/2 \leqslant \deg v_{n} \leqslant n-1-k < n/2 </tex>, что невозможно. Поэтому <tex> v_{1} </tex> и <tex> v_{n} </tex> должны быть смежны. | Далее, так как <tex> k \geqslant (n-1)/2 </tex>, то <tex> n/2 \leqslant \deg v_{n} \leqslant n-1-k < n/2 </tex>, что невозможно. Поэтому <tex> v_{1} </tex> и <tex> v_{n} </tex> должны быть смежны. | ||
Строка 20: | Строка 25: | ||
}} | }} | ||
− | + | '''Замечания''' | |
− | + | ||
− | + | *Приведенное достаточное условие не является необходимым. | |
+ | *Условия теоремы нельзя улучшить, так как при их ослаблении новое условие уже не будет достаточным для гамильтоновости графа. | ||
− | |statement = Если <tex> n \geqslant 3 </tex> и <tex> \deg u + \deg v \geqslant n </tex> для любой пары <tex> u </tex> и <tex> v </tex> несмежных вершин графа <tex> G </tex>,то <tex> G </tex> {{---}} гамильтонов граф. | + | Ограничивая условия теоремы Поша, получаем более простые, но менее сильные достаточные условия, найденные Оре и Дираком соответственно: |
− | + | ||
+ | {{Теорема | ||
+ | |id = Th2 | ||
+ | |about = Следствие 1 | ||
+ | |statement = | ||
+ | Если <tex> n \geqslant 3 </tex> и <tex> \deg u + \deg v \geqslant n </tex> для любой пары <tex> u </tex> и <tex> v </tex> несмежных вершин графа <tex> G </tex>, то <tex> G </tex> {{---}} гамильтонов граф. | ||
}} | }} | ||
+ | |||
+ | {{Теорема | ||
+ | |id = Th3 | ||
+ | |about = Следствие 2 | ||
+ | |statement = | ||
+ | Если <tex> n > 3 </tex> и <tex> \deg v \geqslant n/2 </tex> для любой вершины <tex> v </tex> графа <tex> G </tex>, то <tex> G </tex> {{---}} гамильтонов граф. | ||
+ | }} | ||
+ | |||
+ | ==Источники== | ||
+ | *Харари Ф. Теория графов: Пер. с англ. / Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 60 с. |
Текущая версия на 22:18, 10 октября 2014
Теорема (Поша): |
Пусть граф имеет вершин.
|
Доказательство: |
Предположим, что теорема неверна. Пусть — максимальный негамильтонов граф с вершинами, удовлетворяющий условиям теоремы.Легко видеть, что добавление любого ребра в граф, обладающий указанными свойствами, приводит к графу, который также обладает этими свойствами. Таким образом, поскольку добавление к Покажем сначала, что всякая вершина, степень которой не меньше произвольного ребра приводит к гамильтонову ребру, любые две несмежные вершины соединимы простой остовной цепью. , смежна с каждой вершиной со степенью, большей чем . Не умаляя общности, допустим, что и , но вершины и не смежны. Тогда существует простая остовная цепь , соединяющая и . Обозначим вершины, смежные с , через , где и . Ясно, что вершина не может быть смежной ни с одной вершиной из вида , поскольку тогда в был бы гамильтонов цикл .Далее, так как , то , что невозможно. Поэтому и должны быть смежны.Отсюда следует, что если Таким образом, в для всех вершин , то — гамильтонов граф. В силу изложенного выше каждая пара вершин графа смежна, т.е. — полный граф. Мы пришли к противоречию, поскольку — гамильтонов граф для всех . есть вершина с . Обозначим через наибольшую среди степеней всех таких вершин. Выберем такую вершину , что . По принятому предположению число вершин со степенями, не превосходящими , не больше чем , поэтому должно быть более чем вершин со степенями, превосходящими , и, следовательно, не меньшими чем . В результате найдется некоторая вершина, скажем , степени по крайней мере , не смежная с . Так как и не смежны, то существует остовная простая цепь . Как и выше, обозначим через вершины графа , смежные с , и заметим, что вершина не может быть смежной ни с одной из вершин для . Но поскольку и не смежны, а имеет степень не меньше , то, как было показано в первой части доказательства, должно быть меньше чем . Так как по предположению число вершин со степенями, не превосходящими , меньше чем , то хотя бы одна из вершин , скажем , должна иметь степень не меньше . Итак, мы установили, что степени двух несмежных вершин и не меньше . Полученное противоречие завершает доказательство теоремы. |
Замечания
- Приведенное достаточное условие не является необходимым.
- Условия теоремы нельзя улучшить, так как при их ослаблении новое условие уже не будет достаточным для гамильтоновости графа.
Ограничивая условия теоремы Поша, получаем более простые, но менее сильные достаточные условия, найденные Оре и Дираком соответственно:
Теорема (Следствие 1): |
Если и для любой пары и несмежных вершин графа , то — гамильтонов граф. |
Теорема (Следствие 2): |
Если и для любой вершины графа , то — гамильтонов граф. |
Источники
- Харари Ф. Теория графов: Пер. с англ. / Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 60 с.