Укладка графа с планарными компонентами вершинной двусвязности — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 25 промежуточных версий 7 участников) | |||
Строка 1: | Строка 1: | ||
{{Теорема | {{Теорема | ||
− | |about= | + | |about=об укладке графа с планарными компонентами вершинной двусвязности |
− | |statement=Если [[Отношение вершинной двусвязности|компоненты вершинной двусвязности]] графа <tex>G</tex> планарны, то и сам граф <tex>G</tex> планарен. | + | |statement=Если [[Отношение вершинной двусвязности|компоненты вершинной двусвязности]] [[Основные определения: граф, ребро, вершина, степень, петля, путь, цикл|графа]] <tex>G</tex> [[Укладка графа на плоскости|планарны]], то и сам граф <tex>G</tex> планарен. |
|proof= | |proof= | ||
Строка 12: | Строка 12: | ||
|proof= | |proof= | ||
− | Предварительно заметим, что | + | Предварительно заметим, что в доказательстве используются утверждения [[Укладка графа с планарными компонентами реберной двусвязности#l1|леммы I]] и [[Укладка графа с планарными компонентами реберной двусвязности#l2|леммы II]] из статьи [[Укладка графа с планарными компонентами реберной двусвязности]]. Итак, уложим <tex>G_2</tex> на сфере и уложим <tex>G_1</tex> на плоскости так, чтобы ребро <tex>e_1 \in G_1</tex> смежное с <tex>v_1</tex> (если таковое имеется) оказалось на границе внешней грани (по [[#l2|лемме II]] это возможно). Если такого ребра <tex>e_1</tex> не существует, значит вершина <tex>v_1</tex> изолирована, в таком случае возьмем любую укладку <tex>G_1</tex> на плоскости и переместим точку, соответствующую <tex>v_1</tex> во внешнюю грань. Иначе сожмем часть плоскости, содержащую укладку <tex>G_1</tex> так, чтобы она вмещалась в одну из граней укладки <tex>G_2</tex> смежную с <tex>v_1</tex>. Рассмотрим множество <tex>U</tex> вершин смежных с <tex>v_1</tex>. Уберем кривые, соответствующие ребрам, инцидентным <tex>v_1</tex>. Ясно, что после этого множество вершин <tex>U</tex> лежит на внешней границе укладки <tex>G_1</tex>. Соединим теперь каждую вершину из <tex>U</tex> c <tex>v_2</tex> непересекающимися жордановыми линиями так, чтобы они не задевали укладок <tex>G_1</tex> и <tex>G_2</tex> (рис. 1). Таким образом мы совместили вершины <tex>v_1</tex> и <tex>v_2</tex> в вершине <tex>v_2</tex>, а значит получили укладку графа <tex>G</tex> на сфере, следовательно <tex>G</tex> - планарен. |
+ | [[Файл: Planar_vertex_biconnected_1.png|300px|center|thumb|рис. 1.]] | ||
}} | }} | ||
− | Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности | + | Докажем утверждение теоремы для одной из компоненты связности графа <tex>G</tex>. Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. |
− | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \ | + | Итак пусть граф <tex>G</tex> связен. Если <tex>G = K_1</tex>, то <tex>G</tex> очевидно планерен, поэтому предположим, что <tex>|EG| \geqslant 1</tex> , а значит имеется по-крайней мере один блок в <tex>G</tex>. Рассмотрим связный подграф <tex>T</tex> графа блоков и точек сочленений графа <tex>G</tex> такой, что <tex>\forall v</tex> - т.с. <tex>G</tex> имеем <tex>\deg(v) \geqslant 2</tex>. Из [[Граф блоков-точек сочленения#lemma1|леммы]] и из связности <tex>T</tex> получаем, что <tex>T</tex> — двудольное [[Дерево, эквивалентные определения|дерево]]. |
− | Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем | + | Докажем индукцией по числу вершин в графе <tex>T</tex>, что подграф <tex>G'</tex> графа <tex>G</tex> состоящий из блоков графа <tex>G</tex> принадлежащих графу <tex>T</tex> планарен (далее будем говорить, что <tex>G'</tex> соответствует <tex>T</tex>). |
'''База индукции.''' | '''База индукции.''' | ||
− | <div style="border:1px | + | <div style="border:1px dashed #000; width:90%; margin: 10px; padding:4px; background-color: #fdfdfd; padding-left:10px;"> |
Если <tex>|VT| = 1</tex>, то граф <tex>T</tex> тривиальный. Его единственная вершина — это блок графа <tex>G</tex>, который по утверждению теоремы планарен. | Если <tex>|VT| = 1</tex>, то граф <tex>T</tex> тривиальный. Его единственная вершина — это блок графа <tex>G</tex>, который по утверждению теоремы планарен. | ||
</div> | </div> | ||
Строка 27: | Строка 28: | ||
'''Индукционный переход.''' | '''Индукционный переход.''' | ||
− | <div style="border:1px | + | <div style="border:1px dashed #000; width:90%; margin: 10px; padding:4px; background-color: #fdfdfd; padding-left:10px;"> |
Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> планарен. | Пусть утверждение верно для <tex>|VT| < m</tex>. Рассмотрим <tex>T</tex>, для которого <tex>|VT| = m > 1</tex>, и соответствующий <tex>T</tex> подграф <tex>G'</tex> графа <tex>G</tex>. Докажем, что <tex>G'</tex> планарен. | ||
− | Положим <tex>G_1</tex> — это блок графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex>, a <tex>v</tex> | + | Положим <tex>G_1</tex> — это блок графа <tex>G'</tex> являющийся висячей вершиной дерева <tex>T</tex> (вспомним, что в дереве, в котором более одной вершины, всегда есть есть висячие вершины, и то, что висячими вершинами в графе блоков и т.с. не могут быть т.с.), a <tex>v</tex> {{---}} т.с. в <tex>G'</tex> смежная с <tex>G_1</tex> в <tex>T</tex>. <tex>G_1</tex> планарен по утверждению теоремы, т.к. блоки графа <tex>G'</tex> совпадают с блоками графа <tex>G</tex>. Заметим, что <tex>\deg(v) > 1</tex>, т.к. <tex>v</tex> {{---}} т.с., следовательно не висячая. Рассмотрим два случая: |
− | #<tex>deg(v) = 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash {u,v}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме удаленной <tex>v</tex>) не уменьшилась, значит <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 2 = m - 2 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex> | + | #<tex>\deg(v) = 2</tex> в <tex>T</tex> (рис. 2). Обозначим за <tex>T'</tex> <tex>T\backslash \{u,v\}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме удаленной <tex>v</tex>) не уменьшилась, значит <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 2 = m - 2 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> и <tex>v</tex> по очереди были висячими вершинами <tex>T</tex> и <tex>T\backslash \{u\}</tex>.[[Файл: Planar vertex biconnected 2.png|270px|center|thumb|рис. 2. Красные {{---}} точки сочленений. Голубые {{---}} блоки.]] |
− | #<tex>deg (v) > 2</tex> в <tex>T</tex>. Обозначим за <tex>T'</tex> <tex>T\backslash {u}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме <tex>v</tex>, для нее степень уменьшилась ровно на <tex>1</tex>) не уменьшилась, а для вершины <tex>v</tex> в <tex>T'</tex> верно, что <tex>deg v >= 2</tex>, то <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 1 = m - 1 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> была висячей вершиной в <tex>T</tex> | + | #<tex>\deg (v) > 2</tex> в <tex>T</tex> (рис. 3). Обозначим за <tex>T'</tex> <tex>T\backslash \{u\}</tex>. Поскольку степень ни одной из т.с. <tex>G'</tex> принадлежащих <tex>T</tex> (кроме <tex>v</tex>, для нее степень уменьшилась ровно на <tex>1</tex>) не уменьшилась, а для вершины <tex>v</tex> в <tex>T'</tex> верно, что <tex>\deg(v) >= 2</tex>, то <tex>T'</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции. Заметим, что <tex>VT' = VT - 1 = m - 1 < m</tex>. Заметим также, что <tex>T'</tex> связен, т.к. <tex>u</tex> была висячей вершиной в <tex>T</tex>.[[Файл: Planar vertex biconnected 3.png|270px|center|thumb|рис. 3. Красные {{---}} точки сочленений. Голубые {{---}} блоки.]] |
− | Рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex> соответствующий дереву <tex>T'</tex>. Поскольку T' | + | Рассмотрим подграф <tex>G_2</tex> графа <tex>G'</tex> соответствующий дереву <tex>T'</tex>. Поскольку <tex>T'</tex> связен, степени вершин в <tex>T'</tex> соответствующих т.с. графа <tex>G'</tex> удовлетворяют предположению индукции и, очевидно, также как и <tex>T</tex> граф <tex>T'</tex> является подграфом графа блоков и точек сочленений <tex>G</tex>, получим, что <tex>G_2</tex> планарен по предположению индукции, т.к. <tex>VT' < m</tex>. |
− | Из определения ребер дерева блоков и точек сочленений получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> | + | Из определения ребер дерева блоков и точек сочленений получаем, что графы <tex>G_1</tex> и <tex>G_2</tex> имеют единственную общую точку {{---}} точку сочленения <tex>v</tex>. Поскольку множество блоков <tex>G'</tex> принадлежащих <tex>T</tex> состоит из <tex>G_1</tex> и множества блоков <tex>T'</tex>, то <tex>G' = G_1\cup G_2</tex>. <tex>G_1, G_2, G'</tex> удовлетворяют условию [[#l1|леммы I]], поэтому получим укладку <tex>G</tex> из укладок <tex>G_1</tex> и <tex>G_2</tex> так, как это сделано в доказательстве леммы. Получаем, что <tex>G'</tex> планарен. А значит предположение индукции верно. |
</div> | </div> | ||
− | Рассматривая в качестве <tex>T</tex> граф <tex>T_G</tex> блоков и точек сочленений <tex>G</tex>. По [[Граф блоков-точек сочленения|лемме]] <tex>T_G</tex> - дерево, следовательно каждая его вершина имеет степень как минимум <tex>1</tex>. Поскольку граф <tex>G<tex> содержит хотя бы один блок. Если это единственный блок, то <tex>T_G</tex> не содержит ни одной точки сочленения. Если граф <tex>G</tex> содержит хотя бы <tex>2</tex> блока и, следовательно | + | Рассматривая в качестве <tex>T</tex> граф <tex>T_G</tex> блоков и точек сочленений <tex>G</tex>. По [[Граф блоков-точек сочленения|лемме]] <tex>T_G</tex> {{---}} дерево, следовательно каждая его вершина имеет степень как минимум <tex>1</tex>. Поскольку граф <tex>G</tex> содержит хотя бы один блок. Если это единственный блок, то <tex>T_G</tex> не содержит ни одной точки сочленения. Если граф <tex>G</tex> содержит хотя бы <tex>2</tex> блока и, следовательно хотя бы одну точку сочленения, то <tex>T_G</tex> {{---}} дерево, содержащее хотя бы одно ребро. Поскольку в графе блоков и точек сочленений точки сочленений не могут быть висячими вершинами, то каждая из т.с. графа <tex>G</tex> принадлежащих <tex>T_G</tex> имеет степень как минимум <tex>2</tex>. Получаем, что <tex>T_G</tex> удовлетворяет условиям на <tex>T</tex> из предположения индукции, а значит <tex>G</tex> планарен. |
}} | }} | ||
− | '''Замечание.''' | + | '''Замечание.''' В доказательстве теоремы непосредственно указывается способ получения укладки графа <tex>G</tex> из имеющихся укладок его блоков. |
− | == | + | ==См. также== |
+ | *[[Укладка_графа_с_планарными_компонентами_реберной_двусвязности|Укладка графа с планарными компонентами реберной двусвязности]] | ||
− | + | ==Источники информации== | |
− | H. Whitney | + | * Асанов М. О., Баранский В. А., Расин В. В. '''Дискретная математика: графы, матроиды, алгоритмы''' — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5 |
+ | |||
+ | * H. Whitney '''Non-separable and planar graphs''' — Trans. Amer. Math. Soc., 1932. | ||
+ | |||
+ | [[Категория: Алгоритмы и структуры данных]] | ||
+ | [[Категория: Укладки графов ]] |
Текущая версия на 19:03, 4 сентября 2022
Теорема (об укладке графа с планарными компонентами вершинной двусвязности): | ||||||
Доказательство: | ||||||
Докажем вспомогательную лемму.
Докажем утверждение теоремы для одной из компоненты связности графа леммы и из связности получаем, что — двудольное дерево. . Ясно, что имея укладки на плоскости каждой из компонент связности графа, мы можем получить укладку на плоскости и всего графа. Итак пусть граф связен. Если , то очевидно планерен, поэтому предположим, что , а значит имеется по-крайней мере один блок в . Рассмотрим связный подграф графа блоков и точек сочленений графа такой, что - т.с. имеем . ИзДокажем индукцией по числу вершин в графе , что подграф графа состоящий из блоков графа принадлежащих графу планарен (далее будем говорить, что соответствует ).База индукции. Если , то граф тривиальный. Его единственная вершина — это блок графа , который по утверждению теоремы планарен.Индукционный переход. Пусть утверждение верно для . Рассмотрим , для которого , и соответствующий подграф графа . Докажем, что планарен.Положим — это блок графа являющийся висячей вершиной дерева (вспомним, что в дереве, в котором более одной вершины, всегда есть есть висячие вершины, и то, что висячими вершинами в графе блоков и т.с. не могут быть т.с.), a — т.с. в смежная с в . планарен по утверждению теоремы, т.к. блоки графа совпадают с блоками графа . Заметим, что , т.к. — т.с., следовательно не висячая. Рассмотрим два случая:
Рассмотрим подграф графа соответствующий дереву . Поскольку связен, степени вершин в соответствующих т.с. графа удовлетворяют предположению индукции и, очевидно, также как и граф является подграфом графа блоков и точек сочленений , получим, что планарен по предположению индукции, т.к. .Из определения ребер дерева блоков и точек сочленений получаем, что графы леммы I, поэтому получим укладку из укладок и так, как это сделано в доказательстве леммы. Получаем, что планарен. А значит предположение индукции верно. и имеют единственную общую точку — точку сочленения . Поскольку множество блоков принадлежащих состоит из и множества блоков , то . удовлетворяют условию | ||||||
Замечание. В доказательстве теоремы непосредственно указывается способ получения укладки графа
из имеющихся укладок его блоков.См. также
Источники информации
- Асанов М. О., Баранский В. А., Расин В. В. Дискретная математика: графы, матроиды, алгоритмы — НИЦ РХД, 2001. — 288 с. — ISBN 5-93972-076-5
- H. Whitney Non-separable and planar graphs — Trans. Amer. Math. Soc., 1932.