Лексикографический порядок — различия между версиями
Flanir (обсуждение | вклад) (→Примеры) |
м (rollbackEdits.php mass rollback) |
||
(не показано 8 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
− | |definition=Пусть даны две последовательности <tex> ~A = a_1 a_2 | + | |definition=Пусть даны две последовательности <tex> ~A = a_1 a_2 \dots a_n </tex> и <tex> ~B = b_1 b_2 \dots b_m </tex> |
Тогда последовательность <tex> ~A </tex> '''лексикографически меньше''' (англ. ''lexicographically less'') последовательности <tex> ~B </tex>, если выполняется одно из двух условий: | Тогда последовательность <tex> ~A </tex> '''лексикографически меньше''' (англ. ''lexicographically less'') последовательности <tex> ~B </tex>, если выполняется одно из двух условий: | ||
*<tex> n < m </tex> и при этом <tex> a_i = b_i </tex> для всех <tex>i \in [1 .. n] </tex>, | *<tex> n < m </tex> и при этом <tex> a_i = b_i </tex> для всех <tex>i \in [1 .. n] </tex>, | ||
− | * <tex> \ | + | * <tex> \exists k\leqslant \min(n, m): a_k < b_k </tex> и при этом <tex> \forall j : j < k ~a_j = b_j </tex>. |
}} | }} | ||
Приведем псевдокод сравнения последовательностей из элементов множества '''Т''': | Приведем псевдокод сравнения последовательностей из элементов множества '''Т''': | ||
− | '''function''' compare(A, B : '''list <T>''') | + | '''function''' compare(A, B : '''list <T>'''): '''Ord''' <font color=green>// Возвращает "LT", если A < B, "GT", если A > B, или "EQ", если последовательности равны</font> |
'''for''' i = 1 '''to''' min(len(A), len(B)) | '''for''' i = 1 '''to''' min(len(A), len(B)) | ||
− | '''if''' A[i] < B[i] | + | '''if''' A[i] < B[i] <font color=green> // i-й элемент А меньше i-го элемента B, но префиксы длины i - 1 равны</font> |
'''return''' LT | '''return''' LT | ||
− | '''if''' A[i] > B[i] | + | '''if''' A[i] > B[i] <font color=green> // i-й элемент А больше i-го элемента B, но префиксы длины i - 1 равны</font> |
'''return''' GT | '''return''' GT | ||
− | '''if''' len(A) < len(B) | + | '''if''' len(A) < len(B) <font color=green>// А {{---}} префикс В, но не равна ей</font> |
'''return''' LT | '''return''' LT | ||
− | '''if''' len(A) > len(B) | + | '''if''' len(A) > len(B) <font color=green>// В {{---}} префикс А, но не равна ей</font> |
'''return''' GT | '''return''' GT | ||
− | '''return''' EQ | + | '''return''' EQ <font color=green>// Длины последовательностей и все элементы равны</font> |
{{Определение | {{Определение | ||
|definition=Последовательности записаны в '''лексикографическом порядке''' (англ. ''lexicographical order''), если для любых <tex> i<j </tex> выполняется неравенство <tex> S_i<S_j </tex>, где <tex> S_i </tex> и <tex> S_j </tex> последовательности с номерами <tex> i </tex> и <tex> j </tex>. | |definition=Последовательности записаны в '''лексикографическом порядке''' (англ. ''lexicographical order''), если для любых <tex> i<j </tex> выполняется неравенство <tex> S_i<S_j </tex>, где <tex> S_i </tex> и <tex> S_j </tex> последовательности с номерами <tex> i </tex> и <tex> j </tex>. | ||
Строка 27: | Строка 27: | ||
== Примеры == | == Примеры == | ||
− | * Перестановки (светло- | + | * Перестановки (<font color=#c355a0>'''светло-фиолетовым выделен'''</font> общий префикс, <font color=#992574>'''темно-фиолетовым'''</font> первый отличный элемент, так как <tex>4 < 6</tex>, то первая перестановка лексикографически меньше) |
− | {| cellpadding="4" style="margin-left: left; margin-right: left;" | + | {| cellpadding="4" style="margin-left: left; margin-right: left;" |
| [[Файл:Compareperm.png]] | | [[Файл:Compareperm.png]] | ||
|} | |} | ||
− | * Сочетания ( | + | * Сочетания (так как <tex>4 < 6</tex>, то первое сочетание лексикографически меньше) |
{| cellpadding="4" style="margin-left: left; margin-right: left;" | {| cellpadding="4" style="margin-left: left; margin-right: left;" | ||
| [[Файл:Comparechoose.png]] | | [[Файл:Comparechoose.png]] | ||
|} | |} | ||
− | * [[комбинаторные объекты|Разбиение на слагаемые]] ( | + | * [[комбинаторные объекты|Разбиение на слагаемые]] (так как <tex>4 < 9</tex>, то первое разбиение на слагаемые лексикографически меньше) |
{| cellpadding="4" style="margin-left: left; margin-right: left;" | {| cellpadding="4" style="margin-left: left; margin-right: left;" | ||
| [[Файл:Compare part.png]] | | [[Файл:Compare part.png]] |
Текущая версия на 19:03, 4 сентября 2022
Определение: |
Пусть даны две последовательности Тогда последовательность лексикографически меньше (англ. lexicographically less) последовательности , если выполняется одно из двух условий:
| и
Приведем псевдокод сравнения последовательностей из элементов множества Т:
function compare(A, B : list <T>): Ord // Возвращает "LT", если A < B, "GT", если A > B, или "EQ", если последовательности равны for i = 1 to min(len(A), len(B)) if A[i] < B[i] // i-й элемент А меньше i-го элемента B, но префиксы длины i - 1 равны return LT if A[i] > B[i] // i-й элемент А больше i-го элемента B, но префиксы длины i - 1 равны return GT if len(A) < len(B) // А — префикс В, но не равна ей return LT if len(A) > len(B) // В — префикс А, но не равна ей return GT return EQ // Длины последовательностей и все элементы равны
Определение: |
Последовательности записаны в лексикографическом порядке (англ. lexicographical order), если для любых | выполняется неравенство , где и последовательности с номерами и .
Например, слово "сон" лексикографически меньше слова "сонный", так как оно является его префиксом. Слово "низ" лексикографически меньше слова "нос", поскольку первые символы совпадают, а второй символ первого слова меньше, чем второй символ второго.
Примеры
- Перестановки (светло-фиолетовым выделен общий префикс, темно-фиолетовым первый отличный элемент, так как , то первая перестановка лексикографически меньше)
- Сочетания (так как , то первое сочетание лексикографически меньше)
- Разбиение на слагаемые (так как , то первое разбиение на слагаемые лексикографически меньше)
- Последовательность чисел в любой системе счисления, записанных в фиксированной разрядной сетке ( , , , , , , , ).
- Порядок слов в словаре. Предполагается, что буквы можно сравнивать, сравнивая их номера в алфавите. Тогда лексикографический порядок — это, например, , , , , , .
- Эти слова тоже записаны в лексикографическом порядке: , , , , .
См. также
- Генерация комбинаторных объектов в лексикографическом порядке
- Получение предыдущего объекта
- Получение следующего объекта