Линейно ограниченный автомат — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 8 промежуточных версий 5 участников) | |||
Строка 23: | Строка 23: | ||
Если <tex>L</tex> — [[Иерархия Хомского формальных грамматик#Класс 1|контекстно-зависимый язык]], то язык <tex>L</tex> принимается некоторым линейно ограниченным автоматом. | Если <tex>L</tex> — [[Иерархия Хомского формальных грамматик#Класс 1|контекстно-зависимый язык]], то язык <tex>L</tex> принимается некоторым линейно ограниченным автоматом. | ||
|proof= | |proof= | ||
− | Пусть <tex> | + | Пусть <tex>\Gamma = \langle \Sigma , N, S, P\rangle</tex> — контекстно-зависимая грамматика. Мы построим линейный ограниченный автомат <tex>M</tex>, такой, что язык, принимаемый <tex>M</tex>, есть <tex>L(\Gamma)</tex>. |
Входная лента будет иметь две дорожки. Первая дорожка будет содержать входную строку <tex>x (x \ne \varepsilon)</tex> с концевыми маркерами. Вторая дорожка будет использоваться для работы. | Входная лента будет иметь две дорожки. Первая дорожка будет содержать входную строку <tex>x (x \ne \varepsilon)</tex> с концевыми маркерами. Вторая дорожка будет использоваться для работы. | ||
Строка 34: | Строка 34: | ||
#При выходе из подпрограммы первая дорожка все еще будет содержать строку <tex>x</tex>, в то время как вторая дорожка будет содержать некоторую строку <tex>y</tex>, такую, что <tex>S \Rightarrow^*_M y</tex>. | #При выходе из подпрограммы первая дорожка все еще будет содержать строку <tex>x</tex>, в то время как вторая дорожка будет содержать некоторую строку <tex>y</tex>, такую, что <tex>S \Rightarrow^*_M y</tex>. | ||
− | Автомат <tex>M</tex> сравнивает посимвольно цепочки <tex>x</tex> и <tex>y</tex>. Если окажется, что <tex>x \ne y</tex>, то автомат останавливается, не принимая, если же окажется, что <tex>x = y</tex>, то он останавливается, принимая входную цепочку. Ясно, что если <tex>x \in L( | + | Автомат <tex>M</tex> сравнивает посимвольно цепочки <tex>x</tex> и <tex>y</tex>. Если окажется, что <tex>x \ne y</tex>, то автомат останавливается, не принимая, если же окажется, что <tex>x = y</tex>, то он останавливается, принимая входную цепочку. Ясно, что если <tex>x \in L(\Gamma )</tex>, то найдется такая последовательность движений <tex>M</tex>, которая сгенерирует цепочку <tex>x</tex> на второй дорожке, и тогда автомат остановится, принимая. Аналогично, если <tex>M</tex> принимает цепочку <tex>x</tex>, то должна существовать последовательность движений, генерирующих цепочку <tex>x</tex> на второй дорожке. Только при таком условии <tex>M</tex> принимает цепочку <tex>x</tex>. Но, по построению, процесс генерации <tex>x</tex> воспроизводит вывод этой цепочки из <tex>S</tex>. Следовательно, <tex>S \Rightarrow^*_M x</tex>. |
}} | }} | ||
Строка 52: | Строка 52: | ||
* Операции, которые могут удалить всё кроме не измененной копии строки. Применяются, когда, симулированная на другой копии исходной строки, последовательность действий <tex>M</tex> привела к принимающему состоянию. | * Операции, которые могут удалить всё кроме не измененной копии строки. Применяются, когда, симулированная на другой копии исходной строки, последовательность действий <tex>M</tex> привела к принимающему состоянию. | ||
− | Более подробное доказательство приведено в книге<ref>[http://www.math.spbu.ru/user/mbk/PDF/ | + | Более подробное доказательство приведено в книге<ref>[http://www.math.spbu.ru/user/mbk/PDF/ Мартыненко Б.К. Языки и трансляции cтр. 115]</ref>. |
}} | }} | ||
Строка 64: | Строка 64: | ||
== Источники информации == | == Источники информации == | ||
− | + | * [http://drona.csa.iisc.ernet.in/~deepakd/atc-2011/lba.pdf| Linear Bounded Automata] | |
− | * [http://drona.csa.iisc.ernet.in/~deepakd/atc-2011/lba.pdf| Linear Bounded Automata | + | |
+ | [[Категория: Теория формальных языков]] | ||
+ | [[Категория: Теория вычислимости]] | ||
+ | [[Категория: Вычислительные формализмы]] |
Текущая версия на 19:40, 4 сентября 2022
Определение: |
Линейно ограниченный автомат (англ. linear bounded automata, lba) — недетерминированная одноленточная машина Тьюринга, которая никогда не покидает те ячейки, на которых размещен ее ввод. |
Более формально:
Определение: |
Линейно ограниченный автомат — формальная система
| , в которой
Из определения следует, что языком, принимаемым линейно ограниченным автоматом , называется множество
Содержание
Связь линейно ограниченных автоматов с контекстно-зависимыми языками
Теорема: |
Если контекстно-зависимый язык, то язык принимается некоторым линейно ограниченным автоматом. — |
Доказательство: |
Пусть — контекстно-зависимая грамматика. Мы построим линейный ограниченный автомат , такой, что язык, принимаемый , есть .Входная лента будет иметь две дорожки. Первая дорожка будет содержать входную строку с концевыми маркерами. Вторая дорожка будет использоваться для работы.На первом шаге помещает символ в крайнюю левую ячейку второй дорожки. Затем автомат входит в порождающую подпрограмму, которая выполняет следующие шаги:
|
Теорема: |
Если язык принимается линейно ограниченным автоматом, то — контекстно-зависимый язык. |
Доказательство: |
Доказательство схоже с доказательством теоремы о формальной грамматике, генерирующая язык, распознаваемый МТ. Для доказательства этой теоремы построим контекстно-зависимую грамматику, которая моделирует линейно ограниченный автомат. Нетерминалы контекстно-зависимой грамматики должны указывать не только первоначальное содержание некоторой ячейки ленты линейно ограниченного автомата, но также и то, является ли эта ячейка смежной с концевым маркером слева или справа. Такие ячейки в обозначении нетерминалов мы будем снабжать маркерами и , обозначающими, что ячейка граничит соответственно с левым, правым или обоими концевыми маркерами. В обозначении нетерминала состояние линейно ограниченного автомата должно также комбинироваться с символом, находящимся под головкой ленты. Контекстно-зависимая грамматика не может иметь отдельных символов для концевых маркеров и состояния линейно ограниченного автомата, потому что эти символы должны были бы заменяться на пустые цепочки, когда строка превращается в терминальную, а -порождения в контекстно-зависимой грамматике запрещены.В грамматике необходимо поддерживать три типа операций:
|