Рёберный граф — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 8 промежуточных версий 4 участников)
Строка 1: Строка 1:
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
Пусть задан граф <tex>G</tex>, тогда его рёберным графом <tex>L(G)</tex> называется [[Основные_определения_теории_графов|граф]], для которого верны следующие утверждения
+
Пусть задан граф <tex>G</tex>, тогда его '''рёберным графом''' <tex>L(G)</tex> называется граф, для которого верны следующие утверждения
 
* любая вершина графа <tex>L(G)</tex> представляет ребро графа <tex>G</tex>,
 
* любая вершина графа <tex>L(G)</tex> представляет ребро графа <tex>G</tex>,
 
* две вершины графа <tex>L(G)</tex> смежны тогда и только тогда, когда их соответствующие рёбра смежны в <tex>G</tex>.
 
* две вершины графа <tex>L(G)</tex> смежны тогда и только тогда, когда их соответствующие рёбра смежны в <tex>G</tex>.
Строка 31: Строка 31:
 
|id=euler_gam
 
|id=euler_gam
 
|statement=Если граф <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#euler_graph|Эйлеров граф]], то его рёберный граф является [[Гамильтоновы_графы#hamiltonian_graph|Гамильтоновым графом]].
 
|statement=Если граф <tex>G</tex> {{---}} [[Эйлеров_цикл,_Эйлеров_путь,_Эйлеровы_графы,_Эйлеровость_орграфов#euler_graph|Эйлеров граф]], то его рёберный граф является [[Гамильтоновы_графы#hamiltonian_graph|Гамильтоновым графом]].
|proof=Для доказательства приведем контрпример к обратному утверждению. На следующем рисунке граф <tex>L(G)</tex> {{---}} Гамильтонов граф, а граф <tex>G</tex> не является Эйлеровым графом.
+
|proof=Рассмотрим Эйлеров путь <tex>e_{i_1},v_{k_1},e_{i_2},\dots,v_{k_{n-1}},e_{i_n}</tex> в исходном графе <tex>G</tex>. Составим из вершин реберного графа <tex>L(G)</tex> последовательность <tex>v_{j_1},\dots,v_{j_n}</tex>, поcтавив в соответсвие ребру <tex>e_{i_k}</tex> вершину <tex>v_{j_k}</tex>. Так как два подряд идущих ребра <tex>e_{i_k},e_{i_{k+1}}</tex> из исходного пути смежны, то из определения реберного графа следует, что сответствующие подряд идущие вершины в получившейся последовательности <tex>v_{j_k},v_{j_{k+1}}</tex> смежны. Следовательно мы получили Гамильтонов путь <tex>v_{j_1},e_{t_1},\dots,e_{t_{n-1}},v_{j_n}</tex> в реберном графе <tex>L(G)</tex>. Доказательство для циклов аналогично.
[[Файл:Line_graph_gam_euler.PNG|300px]]
 
 
}}
 
}}
 
{{Утверждение
 
{{Утверждение
Строка 39: Строка 38:
 
{{Утверждение
 
{{Утверждение
 
|statement=Реберный граф реберного графа <tex>L(G)</tex> '''не''' является исходным графом <tex>G</tex>.
 
|statement=Реберный граф реберного графа <tex>L(G)</tex> '''не''' является исходным графом <tex>G</tex>.
|proof=Контрпримером является граф и раздела [[#Построение|Построение]]. Построив по указанному принципу реберный граф к графу <tex>L(G)</tex>, мы убедимся, что он не совпадает с исходным графом <tex>G</tex>.
+
|proof=Контрпримером является граф из раздела [[#Построение|построение]]. В реберном графе количество вершин равно количеству ребер в исходном. Таким образом, в реберном графе к графу <tex>L(G)</tex> будет <tex>9</tex> вершин, а в исходном графе <tex>G</tex> их всего <tex>5</tex>.
 
}}
 
}}
  

Текущая версия на 19:19, 4 сентября 2022

Определение:
Пусть задан граф [math]G[/math], тогда его рёберным графом [math]L(G)[/math] называется граф, для которого верны следующие утверждения
  • любая вершина графа [math]L(G)[/math] представляет ребро графа [math]G[/math],
  • две вершины графа [math]L(G)[/math] смежны тогда и только тогда, когда их соответствующие рёбра смежны в [math]G[/math].


Граф [math]G[/math] и его реберный граф [math]L(G)[/math]

Построение

Line graph build 1.png Line graph build 2.png Line graph build 3.png Line graph build 4.png
Граф [math]G[/math] Новые вершины [math]L(G)[/math] Добавлены рёбра в [math]L(G)[/math] Рёберный граф [math]L(G)[/math]

Свойства

Утверждение:
Рёберный граф связного графа связен.
[math]\triangleright[/math]
Если [math]G[/math] связен, он содержит путь, соединяющий любые два его ребра, что переводится в путь графа [math]L(G)[/math], содержащий любые две вершины графа [math]L(G)[/math].
[math]\triangleleft[/math]
Утверждение:
Задача о максимальном независимом множестве для рёберного графа соответствует задаче нахождения максимального паросочетания в исходном графе.
Утверждение:
Рёберное хроматическое число графа [math]G[/math] равно вершинному хроматическому числу его рёберного графа [math]L(G)[/math].
Утверждение:
Утверждение:
Если граф [math]G[/math]Эйлеров граф, то его рёберный граф является Гамильтоновым графом.
[math]\triangleright[/math]
Рассмотрим Эйлеров путь [math]e_{i_1},v_{k_1},e_{i_2},\dots,v_{k_{n-1}},e_{i_n}[/math] в исходном графе [math]G[/math]. Составим из вершин реберного графа [math]L(G)[/math] последовательность [math]v_{j_1},\dots,v_{j_n}[/math], поcтавив в соответсвие ребру [math]e_{i_k}[/math] вершину [math]v_{j_k}[/math]. Так как два подряд идущих ребра [math]e_{i_k},e_{i_{k+1}}[/math] из исходного пути смежны, то из определения реберного графа следует, что сответствующие подряд идущие вершины в получившейся последовательности [math]v_{j_k},v_{j_{k+1}}[/math] смежны. Следовательно мы получили Гамильтонов путь [math]v_{j_1},e_{t_1},\dots,e_{t_{n-1}},v_{j_n}[/math] в реберном графе [math]L(G)[/math]. Доказательство для циклов аналогично.
[math]\triangleleft[/math]
Утверждение:
Ребра графа [math]G[/math] можно разбить на полные подграфы таким образом, чтобы ни одна из вершин не принадлежала более чем двум подграфам.
Утверждение:
Реберный граф реберного графа [math]L(G)[/math] не является исходным графом [math]G[/math].
[math]\triangleright[/math]
Контрпримером является граф из раздела построение. В реберном графе количество вершин равно количеству ребер в исходном. Таким образом, в реберном графе к графу [math]L(G)[/math] будет [math]9[/math] вершин, а в исходном графе [math]G[/math] их всего [math]5[/math].
[math]\triangleleft[/math]


Теорема:
Если [math]G[/math] — это [math](p,q)[/math]-граф с вершинами, имеющими степени [math]d_i[/math], то [math]L(G)[/math] имеет [math]q[/math] вершин и [math]q_L[/math] ребер, где [math]q_L = -q + {\dfrac{1}{2}}\sum\limits_i{d_{i}^{2}}[/math]
Доказательство:
[math]\triangleright[/math]

По определению реберного графа граф [math]L(G)[/math] имеет [math]q[/math] вершин. Каждые [math]d_i[/math] ребер, инцидентных вершине [math]v_i[/math], дают вклад [math]\begin{pmatrix} d_i \\ 2 \end{pmatrix}[/math] в число ребер графа [math]L(G)[/math], так что

[math]q_L = \sum\limits_i{\begin{pmatrix} d_i \\ 2 \end{pmatrix}} = \dfrac{1}{2}\sum\limits_i{d_i(d_i-1)} = \dfrac{1}{2}\sum\limits_i{d_i^2}-\dfrac{1}{2}\sum\limits_i{d_i} = \dfrac{1}{2}\sum\limits_i{d_i^2-q}[/math]
[math]\triangleleft[/math]

Источники информации

  • Wikipedia — Реберные графы
  • Харари Фрэнк Теория графов: Пер. с англ./ Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 296 с. — ISBN 978-5-397-00622-4.(Глава 8: Реберные графы. стр. 91-104)