Неравенство Макмиллана — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 3 промежуточные версии 3 участников) | |||
Строка 5: | Строка 5: | ||
<tex> \sum\limits_{i = 1}^{|A|} 2^{-l_i} \leqslant 1</tex> (где <tex>l_i</tex> {{---}} длины кодовых слов) выполняется для любого [[Кодирование информации | однозначно декодируемого кода.]] | <tex> \sum\limits_{i = 1}^{|A|} 2^{-l_i} \leqslant 1</tex> (где <tex>l_i</tex> {{---}} длины кодовых слов) выполняется для любого [[Кодирование информации | однозначно декодируемого кода.]] | ||
|proof= | |proof= | ||
− | |||
− | |||
Пусть имеется [[Кодирование информации | однозначный код]] с <tex>k</tex> кодовыми словами <tex>P_1,\dots, P_k</tex>. Необходимо доказать, что их длины <tex>n_i=|P_i|</tex> удовлетворяют неравенству Макмиллана. | Пусть имеется [[Кодирование информации | однозначный код]] с <tex>k</tex> кодовыми словами <tex>P_1,\dots, P_k</tex>. Необходимо доказать, что их длины <tex>n_i=|P_i|</tex> удовлетворяют неравенству Макмиллана. | ||
Строка 18: | Строка 16: | ||
Подставим <tex>a=b= </tex> <tex dpi = 150> \frac{1}{2}</tex> в неравенство. Для кодового слова <tex>P_i</tex> длины <tex>{n_i}</tex> получим <tex>2^{-n_i}</tex>. В левой части получится выражение из неравенства Макмиллана: <tex>(2^{-n_1}+2^{-n_2}+\dots+2^{-n_k})^N</tex>. Всего имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex> равных <tex>2^{-l}</tex>, следовательно слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых: <tex>N\times{\max(n_i)}</tex>. Получаем, что <tex>(2^{-n_1}+2^{-n_2}+\dots+2^{-n_k})^N \leqslant N\times{\max(n_i)}</tex> верно для любого <tex>N</tex>. Так как показательная функция растет быстрее линейной, то при основании (сумма <tex>2^{-n_i}</tex>) большем единицы неравенство нарушается. Поэтому, для [[Кодирование информации | однозначного кода]] выполняется неравенство Макмиллана. | Подставим <tex>a=b= </tex> <tex dpi = 150> \frac{1}{2}</tex> в неравенство. Для кодового слова <tex>P_i</tex> длины <tex>{n_i}</tex> получим <tex>2^{-n_i}</tex>. В левой части получится выражение из неравенства Макмиллана: <tex>(2^{-n_1}+2^{-n_2}+\dots+2^{-n_k})^N</tex>. Всего имеется не более <tex>2^l</tex> слагаемых длины <tex>l</tex> равных <tex>2^{-l}</tex>, следовательно слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых: <tex>N\times{\max(n_i)}</tex>. Получаем, что <tex>(2^{-n_1}+2^{-n_2}+\dots+2^{-n_k})^N \leqslant N\times{\max(n_i)}</tex> верно для любого <tex>N</tex>. Так как показательная функция растет быстрее линейной, то при основании (сумма <tex>2^{-n_i}</tex>) большем единицы неравенство нарушается. Поэтому, для [[Кодирование информации | однозначного кода]] выполняется неравенство Макмиллана. | ||
}} | }} | ||
+ | |||
+ | == См.также == | ||
+ | *[[Неравенство Крафта]] | ||
== Источники информации == | == Источники информации == | ||
*[http://ru.wikipedia.org/wiki/Неравенство_Крафта_—_Макмиллана Википедия — Неравенство Макмиллана] | *[http://ru.wikipedia.org/wiki/Неравенство_Крафта_—_Макмиллана Википедия — Неравенство Макмиллана] | ||
*''Шень А. Х.'' Программирование: теоремы и задачи. {{---}} М.: МЦНМО, 2011. С. 206 - 210. ISBN 978-5-94057-696-9 | *''Шень А. Х.'' Программирование: теоремы и задачи. {{---}} М.: МЦНМО, 2011. С. 206 - 210. ISBN 978-5-94057-696-9 | ||
− | |||
− | |||
− | |||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Алгоритмы сжатия]] | [[Категория: Алгоритмы сжатия]] |
Текущая версия на 19:39, 4 сентября 2022
При необходимости построить префиксный код с большим числом кодовых слов заданной длины проверка существования такого кода может быть достаточно сложной. Но неравенство Макмиллана даёт необходимое условие существования префиксных и любых однозначно декодируемых кодов, обладающих заданным набором длин кодовых слов.
Теорема (Неравенство Макмиллана (англ. McMillan's inequality)): |
(где — длины кодовых слов) выполняется для любого |
Доказательство: |
Пусть имеется однозначный код с кодовыми словами . Необходимо доказать, что их длины удовлетворяют неравенству Макмиллана. Для удобства при кодировании вместо нулей и единиц будем использовать и соответственно.Представим сумму всех слов и возведем эту сумму в степень : . Раскроем скобки, подразумевая под умножением конкатенацию двух слов. По определению однозначности никакое слово не может быть получено двумя способами при соединении кодовых слов, следовательно все слова должны получиться разными.Вот пример для однозначного кода со словами и : Все получившиеся слагаемые различны (соответствует определению однозначности). Подставим в неравенство. Для кодового слова длины получим . В левой части получится выражение из неравенства Макмиллана: . Всего имеется не более слагаемых длины равных , следовательно слагаемые данной длины в сумме не превосходят единицы, а правая часть не превосходит максимальной длины слагаемых: . Получаем, что верно для любого . Так как показательная функция растет быстрее линейной, то при основании (сумма ) большем единицы неравенство нарушается. Поэтому, для однозначного кода выполняется неравенство Макмиллана. |
См.также
Источники информации
- Википедия — Неравенство Макмиллана
- Шень А. Х. Программирование: теоремы и задачи. — М.: МЦНМО, 2011. С. 206 - 210. ISBN 978-5-94057-696-9