Участник:Sultan — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «1. Дифференциальные уравнения первого порядка. Понятие уравнения и решения. Поле направл...»)
 
(/* Дифференциальные уравнения первого порядка. Понятие уравнения и решения. Поле направлений. Задача Коши. Теорема Пикара. Общее, частн...)
 
(не показаны 3 промежуточные версии 2 участников)
Строка 1: Строка 1:
1. Дифференциальные уравнения первого порядка. Понятие уравнения и решения. Поле направлений. Задача Коши. Теорема Пикара. Общее, частное и особое решения.
+
==Дифференциальные уравнения первого порядка. Понятие уравнения и решения. Поле направлений. Задача Коши. Теорема Пикара. Общее, частное и особое решения==
2. Методы интегрирования уравнений первого порядка. Уравнения с разделяющимися переменными. Однородное уравнение и уравнения, приводящиеся к однородным.
+
[http://mathhelpplanet.com/static.php?p=osnovnye-ponyatiya-i-opredeleniya-differentsialnyh-uravneniy]
3. Линейные уравнения первого порядка. Уравнение Бернулли.
+
 
4. Уравнения в полных дифференциалах. Интегрирующий множитель.
+
==Методы интегрирования уравнений первого порядка. Уравнения с разделяющимися переменными. Однородное уравнение и уравнения, приводящиеся к однородным==
5. Уравнения первого порядка, неразрешенные относительно производной. Уравнения Лагранжа и Клеро.
+
 
6. Дифференциальные уравнения высших порядков. Основные понятия и определения. Задача Коши. Теорема Пикара. Понижение порядка уравнения. Уравнения, не содержащие искомой функции и последовательных первых производных. Уравнения, не содержащие независимой переменной.
+
==Линейные уравнения первого порядка. Уравнение Бернулли.==
7. Линейные дифференциальные уравнения n-го порядка. Свойства решений линейного однородного уравнения. Фундаментальная система решений и определитель Вронского. Признак линейной независимости решений. Формула Остроградского-Лиувилля.
+
 
8. Построение общего решения линейного однородного уравнения по фундаментальной системе решений. Структура общего решения неоднородного уравнения. Принцип наложения. Метод вариации произвольных постоянных (метод Лагранжа) для уравнения 2-го порядка. Случай уравнения n-го порядка.
+
==Уравнения в полных дифференциалах. Интегрирующий множитель.==
9. Системы дифференциальных уравнений. Основные понятия и определения. Нормальная система. Задача Коши. Механическое истолкование нормальной системы и ее решения. Теорема Пикара. Связь между уравнениями высшего порядка и системами дифференциальных уравнений 1-го порядка.
+
 
10. Линейные системы. Свойства линейных систем. Фундаментальная матрица. Определитель Вронского. Критерий линейной независимости вектор-функций. Формула Остроградского-Лиувилля.
+
==Уравнения первого порядка, неразрешенные относительно производной. Уравнения Лагранжа и Клеро.==
11. Построение общего решения линейной однородной системы по фундаментальной системе решений. Интегрирование линейной однородной системы с постоянными коэффициентами методом Эйлера.
+
 
12. Структура общего решения неоднородной линейной системы. Метод вариации произвольных постоянных (метод Лагранжа).
+
==Дифференциальные уравнения высших порядков. Основные понятия и определения. Задача Коши. Теорема Пикара. Понижение порядка уравнения. Уравнения, не содержащие искомой функции и последовательных первых производных. Уравнения, не содержащие независимой переменной.==
13. Матричный метод интегрирования линейной однородной системы с постоянными коэффициентами. Фундаментальная матрица. Структура фундаментальной матрицы.
+
 
14. Краевая задача для обыкновенного дифференциального уравнения 2-го порядка. Функция Грина краевой задачи Дирихле. Построение функции Грина. Задача Штурма-Лиувилля.
+
==Линейные дифференциальные уравнения n-го порядка. Свойства решений линейного однородного уравнения. Фундаментальная система решений и определитель Вронского. Признак линейной независимости решений. Формула Остроградского-Лиувилля.==
15. Элементы теории устойчивости. Основные понятия и определения. Устойчивость по Ляпунову, асимптотическая устойчивость систем обыкновенных дифференциальных уравнений. Уравнения возмущенного движения. Устойчивость нулевого решения.
+
 
16. Устойчивость системы линейных дифференциальных уравнений. Критерий устойчивости. Устойчивость систем линейных дифференциальных уравнений с постоянными коэффициентами. Теоремы Ляпунова об устойчивости по первому приближению. Теорема Рауса-Гурвица.
+
==Построение общего решения линейного однородного уравнения по фундаментальной системе решений. Структура общего решения неоднородного уравнения. Принцип наложения. Метод вариации произвольных постоянных (метод Лагранжа) для уравнения 2-го порядка. Случай уравнения n-го порядка.==
17. Функции Ляпунова. Теоремы Ляпунова об устойчивости и асимптотической устойчивости. Теоремы Ляпунова и Четаева о неустойчивости.
+
 
18. Особые точки на фазовой плоскости. Фазовый портрет системы. Случай однородной системы линейных дифференциальных уравнений с постоянными коэффициентами.
+
==Системы дифференциальных уравнений. Основные понятия и определения. Нормальная система. Задача Коши. Механическое истолкование нормальной системы и ее решения. Теорема Пикара. Связь между уравнениями высшего порядка и системами дифференциальных уравнений 1-го порядка.==
19. Первый интеграл системы. Теорема о локальном существовании первых интегралов. Понятие порядка системы обыкновенных дифференциальных уравнений при помощи первых интегралов. Симметричная форма записи нормальной автономной системы дифференциальных уравнений. Система нелинейных дифференциальных уравнений.
+
 
20. Дифференциальные уравнения первого порядка с частными производными. Линейные дифференциальные уравнения с частными производными. Уравнения характеристик. Задача Коши. Квазилинейное дифференциальное уравнение.
+
== Линейные системы. Свойства линейных систем. Фундаментальная матрица. Определитель Вронского. Критерий линейной независимости вектор-функций. Формула Остроградского-Лиувилля.==
21. Непрерывная зависимость решений от начальных данных и параметров.
+
 
22. Дифференцируемость решений по начальным данным и параметрам.
+
== Построение общего решения линейной однородной системы по фундаментальной системе решений. Интегрирование линейной однородной системы с постоянными коэффициентами методом Эйлера.==
23. Метод малого параметра.
+
 
24. Элементы теории нелинейных колебаний. Периодические решения квазилинейных систем при отсуствии резонанса.
+
== Структура общего решения неоднородной линейной системы. Метод вариации произвольных постоянных (метод Лагранжа).==
25. Периодические решения квазилинейных систем при резонансе.
+
 
26. Устойчивость периодических решений квазилинейных систем.
+
== Матричный метод интегрирования линейной однородной системы с постоянными коэффициентами. Фундаментальная матрица. Структура фундаментальной матрицы.==
27. Колебания в окрестности состояния равновесия.
+
 
28. Предельные циклы.
+
== Краевая задача для обыкновенного дифференциального уравнения 2-го порядка. Функция Грина краевой задачи Дирихле. Построение функции Грина. Задача Штурма-Лиувилля.==
29. Бифуркация рождения периодического решения.
+
 
30. Приближенные методы решения дифференциальных уравнений.
+
== Элементы теории устойчивости. Основные понятия и определения. Устойчивость по Ляпунову, асимптотическая устойчивость систем обыкновенных дифференциальных уравнений. Уравнения возмущенного движения. Устойчивость нулевого решения.==
 +
 
 +
== Устойчивость системы линейных дифференциальных уравнений. Критерий устойчивости. Устойчивость систем линейных дифференциальных уравнений с постоянными коэффициентами. Теоремы Ляпунова об устойчивости по первому приближению. Теорема Рауса-Гурвица.==
 +
 
 +
== Функции Ляпунова. Теоремы Ляпунова об устойчивости и асимптотической устойчивости. Теоремы Ляпунова и Четаева о неустойчивости.==
 +
 
 +
== Особые точки на фазовой плоскости. Фазовый портрет системы. Случай однородной системы линейных дифференциальных уравнений с постоянными коэффициентами.==
 +
 
 +
== Первый интеграл системы. Теорема о локальном существовании первых интегралов. Понятие порядка системы обыкновенных дифференциальных уравнений при помощи первых интегралов. Симметричная форма записи нормальной автономной системы дифференциальных уравнений. Система нелинейных дифференциальных уравнений.==
 +
 
 +
== Дифференциальные уравнения первого порядка с частными производными. Линейные дифференциальные уравнения с частными производными. Уравнения характеристик. Задача Коши. Квазилинейное дифференциальное уравнение.==

Текущая версия на 19:00, 24 января 2015

Содержание

Дифференциальные уравнения первого порядка. Понятие уравнения и решения. Поле направлений. Задача Коши. Теорема Пикара. Общее, частное и особое решения

[1]

Методы интегрирования уравнений первого порядка. Уравнения с разделяющимися переменными. Однородное уравнение и уравнения, приводящиеся к однородным

Линейные уравнения первого порядка. Уравнение Бернулли.

Уравнения в полных дифференциалах. Интегрирующий множитель.

Уравнения первого порядка, неразрешенные относительно производной. Уравнения Лагранжа и Клеро.

Дифференциальные уравнения высших порядков. Основные понятия и определения. Задача Коши. Теорема Пикара. Понижение порядка уравнения. Уравнения, не содержащие искомой функции и последовательных первых производных. Уравнения, не содержащие независимой переменной.

Линейные дифференциальные уравнения n-го порядка. Свойства решений линейного однородного уравнения. Фундаментальная система решений и определитель Вронского. Признак линейной независимости решений. Формула Остроградского-Лиувилля.

Построение общего решения линейного однородного уравнения по фундаментальной системе решений. Структура общего решения неоднородного уравнения. Принцип наложения. Метод вариации произвольных постоянных (метод Лагранжа) для уравнения 2-го порядка. Случай уравнения n-го порядка.

Системы дифференциальных уравнений. Основные понятия и определения. Нормальная система. Задача Коши. Механическое истолкование нормальной системы и ее решения. Теорема Пикара. Связь между уравнениями высшего порядка и системами дифференциальных уравнений 1-го порядка.

Линейные системы. Свойства линейных систем. Фундаментальная матрица. Определитель Вронского. Критерий линейной независимости вектор-функций. Формула Остроградского-Лиувилля.

Построение общего решения линейной однородной системы по фундаментальной системе решений. Интегрирование линейной однородной системы с постоянными коэффициентами методом Эйлера.

Структура общего решения неоднородной линейной системы. Метод вариации произвольных постоянных (метод Лагранжа).

Матричный метод интегрирования линейной однородной системы с постоянными коэффициентами. Фундаментальная матрица. Структура фундаментальной матрицы.

Краевая задача для обыкновенного дифференциального уравнения 2-го порядка. Функция Грина краевой задачи Дирихле. Построение функции Грина. Задача Штурма-Лиувилля.

Элементы теории устойчивости. Основные понятия и определения. Устойчивость по Ляпунову, асимптотическая устойчивость систем обыкновенных дифференциальных уравнений. Уравнения возмущенного движения. Устойчивость нулевого решения.

Устойчивость системы линейных дифференциальных уравнений. Критерий устойчивости. Устойчивость систем линейных дифференциальных уравнений с постоянными коэффициентами. Теоремы Ляпунова об устойчивости по первому приближению. Теорема Рауса-Гурвица.

Функции Ляпунова. Теоремы Ляпунова об устойчивости и асимптотической устойчивости. Теоремы Ляпунова и Четаева о неустойчивости.

Особые точки на фазовой плоскости. Фазовый портрет системы. Случай однородной системы линейных дифференциальных уравнений с постоянными коэффициентами.

Первый интеграл системы. Теорема о локальном существовании первых интегралов. Понятие порядка системы обыкновенных дифференциальных уравнений при помощи первых интегралов. Симметричная форма записи нормальной автономной системы дифференциальных уравнений. Система нелинейных дифференциальных уравнений.

Дифференциальные уравнения первого порядка с частными производными. Линейные дифференциальные уравнения с частными производными. Уравнения характеристик. Задача Коши. Квазилинейное дифференциальное уравнение.