Сортировка слиянием — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 10 промежуточных версий 6 участников) | |||
Строка 1: | Строка 1: | ||
− | '''Сортировка слиянием''' (англ. ''Merge sort'') {{---}} алгоритм сортировки | + | '''Сортировка слиянием''' (англ. ''Merge sort'') {{---}} алгоритм сортировки, использующий <tex>O(n)</tex> дополнительной памяти и работающий за <tex>O(n\log(n))</tex> времени. |
− | |||
− | |||
==Принцип работы== | ==Принцип работы== | ||
Строка 71: | Строка 69: | ||
==Время работы== | ==Время работы== | ||
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай <tex>T(n)</tex> {{---}} время сортировки массива длины <tex>n</tex>, тогда для сортировки слиянием справедливо <tex>T(n)=2T(n/2)+O(n)</tex> <br> | Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай <tex>T(n)</tex> {{---}} время сортировки массива длины <tex>n</tex>, тогда для сортировки слиянием справедливо <tex>T(n)=2T(n/2)+O(n)</tex> <br> | ||
− | <tex>O(n)</tex> {{---}} время, необходимое на то, чтобы слить два массива | + | <tex>O(n)</tex> {{---}} время, необходимое на то, чтобы слить два массива длины <tex>n</tex>. Распишем это соотношение: |
− | |||
− | <tex> | ||
− | + | <tex>T(n)=2T(n/2)+O(n)=4T(n/4)+2O(n)=\dots=T(1)+\log(n)O(n)=O(n\log(n))</tex>. | |
==Сравнение с другими алгоритмами== | ==Сравнение с другими алгоритмами== | ||
Достоинства: | Достоинства: | ||
* устойчивая, | * устойчивая, | ||
− | * можно написать эффективную | + | * можно написать эффективную [[Многопоточная сортировка слиянием|многопоточную сортировку слиянием]], |
* сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память<ref>[http://en.wikipedia.org/wiki/External_sorting Wikipedia {{---}} External sorting]</ref>. | * сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память<ref>[http://en.wikipedia.org/wiki/External_sorting Wikipedia {{---}} External sorting]</ref>. | ||
Недостатки: | Недостатки: | ||
− | |||
* требуется дополнительно <tex>O(n)</tex> памяти, но можно модифицировать до <tex>O(1)</tex>. | * требуется дополнительно <tex>O(n)</tex> памяти, но можно модифицировать до <tex>O(1)</tex>. | ||
Строка 98: | Строка 93: | ||
*[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием] | *[http://ru.wikipedia.org/wiki/Mergesort Википедия {{---}} сортировка слиянием] | ||
*[http://www.sorting-algorithms.com/merge-sort Визуализатор] | *[http://www.sorting-algorithms.com/merge-sort Визуализатор] | ||
− | *[ | + | *[https://ru.wikibooks.org/wiki/Примеры_реализации_сортировки_слиянием Викиучебник {{---}} Примеры реализации на различных языках программирования] |
Текущая версия на 19:10, 4 сентября 2022
Сортировка слиянием (англ. Merge sort) — алгоритм сортировки, использующий
дополнительной памяти и работающий за времени.Содержание
Принцип работы
Алгоритм использует принцип «разделяй и властвуй»: задача разбивается на подзадачи меньшего размера, которые решаются по отдельности, после чего их решения комбинируются для получения решения исходной задачи. Конкретно процедуру сортировки слиянием можно описать следующим образом:
- Если в рассматриваемом массиве один элемент, то он уже отсортирован — алгоритм завершает работу.
- Иначе массив разбивается на две части, которые сортируются рекурсивно.
- После сортировки двух частей массива к ним применяется процедура слияния, которая по двум отсортированным частям получает исходный отсортированный массив.
Слияние двух массивов
У нас есть два массива
и (фактически это будут две части одного массива, но для удобства будем писать, что у нас просто два массива). Нам надо получить массив размером . Для этого можно применить процедуру слияния. Эта процедура заключается в том, что мы сравниваем элементы массивов (начиная с начала) и меньший из них записываем в финальный. И затем, в массиве у которого оказался меньший элемент, переходим к следующему элементу и сравниваем теперь его. В конце, если один из массивов закончился, мы просто дописываем в финальный другой массив. После мы наш финальный массив записываем заместо двух исходных и получаем отсортированный участок.Множество отсортированных списков с операцией моноидом, где нейтральным элементом будет пустой список.
являетсяНиже приведён псевдокод процедуры слияния, который сливает две части массива
function merge(a : int[n]; left, mid, right : int): it1 = 0 it2 = 0 result : int[right - left] while left + it1 < mid and mid + it2 < right if a[left + it1] < a[mid + it2] result[it1 + it2] = a[left + it1] it1 += 1 else result[it1 + it2] = a[mid + it2] it2 += 1 while left + it1 < mid result[it1 + it2] = a[left + it1] it1 += 1 while mid + it2 < right result[it1 + it2] = a[mid + it2] it2 += 1 for i = 0 to it1 + it2 a[left + i] = result[i]
Рекурсивный алгоритм
Функция сортирует подотрезок массива с индексами в полуинтервале
function mergeSortRecursive(a : int[n]; left, right : int): if left + 1 >= right return mid = (left + right) / 2 mergeSortRecursive(a, left, mid) mergeSortRecursive(a, mid, right) merge(a, left, mid, right)
Итеративный алгоритм
При итеративном алгоритме используется на
function mergeSortIterative(a : int[n]): for i = 1 to n, i *= 2 for j = 0 to n - i, j += 2 * i merge(a, j, j + i, min(j + 2 * i, n))
Время работы
Чтобы оценить время работы этого алгоритма, составим рекуррентное соотношение. Пускай
— время, необходимое на то, чтобы слить два массива длины . Распишем это соотношение:
.
Сравнение с другими алгоритмами
Достоинства:
- устойчивая,
- можно написать эффективную многопоточную сортировку слиянием,
- сортировка данных, расположенных на периферийных устройствах и не вмещающихся в оперативную память[1].
Недостатки:
- требуется дополнительно памяти, но можно модифицировать до .
См. также
- Сортировка кучей
- Быстрая сортировка
- Timsort
- Cортировка слиянием с использованием O(1) дополнительной памяти