Участник:Iloskutov/Матан 4сем — различия между версиями
(→Формула Гаусса — Остроградского) |
(→Теорема о вычислении интеграла по взвешенному образу меры) |
||
(не показано 19 промежуточных версий 5 участников) | |||
Строка 3: | Строка 3: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | <tex>\exists U(y_0)</tex> и <tex>\exists g(x)</tex> — суммируемая, что <tex>\forall y \in U(y_0) \quad \forall x : |f(x,y)| | + | <tex>\exists U(y_0)</tex> и <tex>\exists g(x)</tex> — суммируемая, что <tex>\forall y \in U(y_0) \quad \forall x : |f(x,y)| \le g(x)</tex><br> |
Тогда <tex>f</tex> удовлетворяет <tex>L_{loc}</tex> в точке <tex>y_0</tex> | Тогда <tex>f</tex> удовлетворяет <tex>L_{loc}</tex> в точке <tex>y_0</tex> | ||
}} | }} | ||
Строка 180: | Строка 180: | ||
}} | }} | ||
=== Сходящийся ряд в гильбертовом пространстве === | === Сходящийся ряд в гильбертовом пространстве === | ||
+ | {{Определение | ||
+ | |definition=Ряд сходится, если существует элемент из гильбертового | ||
+ | пространства, являющийся пределом частичных сумм. | ||
+ | }} | ||
+ | |||
=== Коэффициенты Фурье, ряд Фурье === | === Коэффициенты Фурье, ряд Фурье === | ||
{{Определение | {{Определение | ||
− | |definition=<tex>t \in L^1[-\pi; \pi]</tex>, тогда <tex>a_k, b_k, c_k</tex> — коэффициенты Фурье для <tex>t (a_k(f), b_k(f), c_k(f))</tex>, а ряд <tex>\dfrac{a_0(t)}{2} + \sum a_k(t) \cos kx + b_k(t) \sin kx \ ; \sum c_k(t) e^{ | + | |definition=<tex>t \in L^1[-\pi; \pi]</tex>, тогда <tex>a_k, b_k, c_k</tex> — коэффициенты Фурье для <tex>t (a_k(f), b_k(f), c_k(f))</tex>, а ряд <tex>\dfrac{a_0(t)}{2} + \sum a_k(t) \cos kx + b_k(t) \sin kx \ ; \sum c_k(t) e^{ikt}</tex> — ряд Фурье |
}} | }} | ||
Строка 203: | Строка 208: | ||
=== Коэффициенты Фурье функции === | === Коэффициенты Фурье функции === | ||
+ | {{Определение | ||
+ | |definition= Коэффициенты Фурье функции <tex>f</tex> — <tex>a_0(f), a_k(f), b_k(f), c_k(f)</tex> из формулы тригонометрического ряда. | ||
+ | |||
+ | Можно вычислить по формулам: | ||
+ | <tex> | ||
+ | a_0 = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \,dx \\ | ||
+ | a_k = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \cos kx \,dx \\ | ||
+ | b_k = \dfrac{1}{\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \sin kx \,dx \\ | ||
+ | c_k = \dfrac{1}{2\pi} \cdot \displaystyle\int^\pi_{-\pi} f(x) \exp(-ikx) \,dx </tex> | ||
+ | }} | ||
+ | |||
=== Ядро Дирихле, ядро Фейера === | === Ядро Дирихле, ядро Фейера === | ||
{{Определение | {{Определение | ||
Строка 223: | Строка 239: | ||
<tex>\forall h \in D</tex> определена функция <tex>K_h(x)</tex>, удовлетворяющая свойствам: | <tex>\forall h \in D</tex> определена функция <tex>K_h(x)</tex>, удовлетворяющая свойствам: | ||
* <tex>\forall h \in D \ K_h \in L^1[-\pi; \pi] \quad \left(\int\limits_{-\pi}^\pi K_h(t) = 1\right)</tex> | * <tex>\forall h \in D \ K_h \in L^1[-\pi; \pi] \quad \left(\int\limits_{-\pi}^\pi K_h(t) = 1\right)</tex> | ||
− | * L-нормы <tex>K_h</tex> огр. в | + | * L-нормы <tex>K_h</tex> огр. в совокупности: <tex>\exists M \, \forall h \in D \quad \int\limits_{-\pi}^{\pi} |K_h| \;dt \leqslant M</tex> |
− | * <tex>\forall \delta > 0 \int\limits_{E\delta} | | + | * <tex>\forall \delta > 0 \int\limits_{E\delta} |K_h| \xrightarrow[h \to x_0]{} 0</tex> |
Тогда семейство <tex>K_h</tex> называется аппроксимативной единицей. | Тогда семейство <tex>K_h</tex> называется аппроксимативной единицей. | ||
}} | }} | ||
Строка 236: | Строка 252: | ||
=== Метод суммирования средними арифметическими === | === Метод суммирования средними арифметическими === | ||
+ | {{Определение | ||
+ | |definition=<tex>\sum a_n = \lim\limits_{n \to \infty} \dfrac{1}{n+1} \cdot \sum\limits_{k=0}^n S_k</tex> | ||
+ | }} | ||
=== Измеримое множество на простой двумерной поверхности в R^3 === | === Измеримое множество на простой двумерной поверхности в R^3 === | ||
=== Мера Лебега на простой двумерной поверхности в R^3 === | === Мера Лебега на простой двумерной поверхности в R^3 === | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | <tex>\varphi \colon \mathbb R^2 \to M \subset \mathbb R^3</tex>.<br> | ||
+ | |||
+ | Мера в <tex>M</tex> — взвешенный образ меры Лебега в <tex>\mathbb R^2</tex> с весом <tex>|\varphi'_u \times \varphi'_v|</tex> | ||
+ | }} | ||
+ | |||
=== Поверхностный интеграл первого рода === | === Поверхностный интеграл первого рода === | ||
{{Определение | {{Определение | ||
Строка 316: | Строка 342: | ||
<tex>X_n = X (|f| > n) \quad X_n \supset X_{n+1} \supset ... \quad \bigcap X_n = e</tex>, т.к. <tex>f</tex> - суммируема, <tex>\mu e = 0</tex><br> | <tex>X_n = X (|f| > n) \quad X_n \supset X_{n+1} \supset ... \quad \bigcap X_n = e</tex>, т.к. <tex>f</tex> - суммируема, <tex>\mu e = 0</tex><br> | ||
<tex>\nu E = \int\limits_E |f| d\mu</tex> - мера <tex>\nu</tex><br> | <tex>\nu E = \int\limits_E |f| d\mu</tex> - мера <tex>\nu</tex><br> | ||
− | <tex>\nu X < + \infty</tex> (т.к. <tex>f</tex> - суммируема и <tex>\int\limits_X |f| d\mu < +\infty</tex>) | + | <tex>\nu X < + \infty</tex> (т.к. <tex>f</tex> - суммируема и <tex>\int\limits_X |f| d\mu < +\infty</tex>)<br> |
Тогда по свойству непрерывности меры сверху: <tex>\nu X_n \to 0</tex><br> | Тогда по свойству непрерывности меры сверху: <tex>\nu X_n \to 0</tex><br> | ||
Запишем данное высказывание как <tex>\forall \epsilon > 0 \quad \exists n_\epsilon : \nu(X_{n_\epsilon}) < \dfrac{\epsilon}{2}</tex>, т.е. <tex>\int\limits_{X_{n_\epsilon}} |f| < \dfrac{\epsilon}{2}</tex><br> | Запишем данное высказывание как <tex>\forall \epsilon > 0 \quad \exists n_\epsilon : \nu(X_{n_\epsilon}) < \dfrac{\epsilon}{2}</tex>, т.е. <tex>\int\limits_{X_{n_\epsilon}} |f| < \dfrac{\epsilon}{2}</tex><br> | ||
Строка 349: | Строка 375: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | <tex>(X, \mathfrak{A}, \mu), f, f_n | + | <tex>(X, \mathfrak{A}, \mu), f, f_n \colon X \rightarrow \overline{\mathbb{R}}, f_n \rightarrow f </tex> почти везде <br> |
<tex>\exists g</tex> - суммируемая и <tex>\forall n |f_n| \leqslant g</tex> для почти всех <tex>x</tex><br> | <tex>\exists g</tex> - суммируемая и <tex>\forall n |f_n| \leqslant g</tex> для почти всех <tex>x</tex><br> | ||
− | Тогда <tex>f_n, f</tex> суммируемые и <tex>\int |f-f_n|d\mu \to 0</tex> | + | Тогда <tex>f_n, f</tex> суммируемые и <tex>\displaystyle\int |f-f_n|d\mu \to 0, \int_X f_n \to \int_X f</tex> |
|proof= | |proof= | ||
+ | Легко видеть, что <tex>f, f_n</tex> — суммируемые.<br> | ||
+ | <tex> | ||
+ | h_n := \sup(|f_n - f|, |f_{n+1} - f|, \dotsc) \\ | ||
+ | h_n \geqslant h_{n+1} \geqslant \dotsb; \qquad |f_n - f| \leqslant 2g \Rightarrow h_n \leqslant 2g | ||
+ | </tex> | ||
+ | |||
+ | Кстати, <tex>\lim h_n = \varlimsup |f_n - f| = 0</tex> при п.в. <tex>x</tex>. | ||
+ | |||
+ | Рассмотрим ф-ии <tex>2g - h_n \geqslant 0</tex> — возр. | ||
+ | : <tex>\lim \displaystyle\int_X (2g - h_n) = \int_X \lim(2g - h_n) = 2 \int_X g</tex> | ||
+ | С другой стороны, | ||
+ | : <tex>\lim \displaystyle\int_X (2g - h_n) = \lim\biggl(2 \int_X g - \int_X h_n\biggr) \Rightarrow \int_X h_n \to 0 \Rightarrow \int_X |f_n - f| \leqslant \int_X h_n</tex> | ||
}} | }} | ||
Строка 376: | Строка 414: | ||
# <tex> y \rightarrow f(x, y)</tex> - непрерывна при всех <tex>x</tex> <br> <tex>f(x, y) \rightarrow f(x, y_0)</tex> при <tex>y \to y_0</tex> при всех <tex>x</tex> <br> Тогда <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex> непрерывна в <tex>y_0</tex> | # <tex> y \rightarrow f(x, y)</tex> - непрерывна при всех <tex>x</tex> <br> <tex>f(x, y) \rightarrow f(x, y_0)</tex> при <tex>y \to y_0</tex> при всех <tex>x</tex> <br> Тогда <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex> непрерывна в <tex>y_0</tex> | ||
|proof= | |proof= | ||
+ | Рассмотрим <tex>f_n(x) = f(x, y_n)</tex>, где <tex>y_n \rightarrow y_0, y_n \in (Y \cap U) \setminus \{a\}</tex>. | ||
+ | Применим теорему Лебега для <tex>f_n</tex>. | ||
}} | }} | ||
Строка 385: | Строка 425: | ||
# <tex>\forall y \quad x \rightarrow f(x, y)</tex> - суммируема, <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex> | # <tex>\forall y \quad x \rightarrow f(x, y)</tex> - суммируема, <tex>I(y) = \int\limits_X f(x, y) d\mu(x)</tex> | ||
# <tex>\forall y</tex> при всех <tex>x \quad \exists^* f'_y(x, y)</tex> | # <tex>\forall y</tex> при всех <tex>x \quad \exists^* f'_y(x, y)</tex> | ||
− | # <tex>y_0 \in Y \quad f'_y(x, y)</tex> удовлетворяет условию <tex>L_{loc}( | + | # <tex>y_0 \in Y \quad f'_y(x, y)</tex> удовлетворяет условию <tex>L_{loc}(y_0)</tex><br>Тогда <tex>I'(y_0) = \int\limits_X f'_y(x, y)d\mu(x)</tex> |
|proof= | |proof= | ||
+ | Пусть <tex>x \in X, y_0 + h \in Y, h \not = 0</tex><br> | ||
+ | <tex>F(x, h) = \frac{f(x, y_0 + h) - f(x, y_0)}{h}</tex> <br> | ||
+ | Т.к. <tex>\frac{I(y_0 + h) - I(y_0)}{h} = \int\limits_X \frac{f(x, y_0 + h) - f(x, y_0)}{h} d\mu(x) = \int\limits_X F(x, h) d\mu(x)</tex>, то при <tex>h \rightarrow 0</tex> сразу будет следовать теорема. Для доказательства законности этого перехода докажем, что <tex>F</tex> удовлетворяет <tex>L_{loc}</tex> в <tex>h = 0</tex>: | ||
+ | |||
+ | <tex>f'_y</tex> удовлетворяет условию <tex>L_{loc}</tex>, поэтому найдутся такие <tex>\delta</tex> и <tex>g</tex>, что <tex>|f'_y(x, y)| \leq g(x)</tex> при почти всех <tex>x</tex> и при <tex>y \in Y, 0 < |y - y_0| < \delta</tex>. | ||
+ | |||
+ | Теорема Лагранжа о среднем применённая к <tex>y \rightarrow f(x, y)</tex> на <tex>(y_0, y_0 + h)</tex> даст <tex>F(x, h) = f'_y(x, y_0 + \theta h)</tex>. Поэтому <tex>F(x, h) \leq g(x)</tex>. | ||
}} | }} | ||
Строка 394: | Строка 441: | ||
<tex>\displaystyle\int\limits_0^{+\infty} \dfrac{\sin \alpha x}{x} = \dfrac{\pi}{2} \cdot \operatorname{sgn}(\alpha)</tex> | <tex>\displaystyle\int\limits_0^{+\infty} \dfrac{\sin \alpha x}{x} = \dfrac{\pi}{2} \cdot \operatorname{sgn}(\alpha)</tex> | ||
|proof= | |proof= | ||
+ | Можно, например, [[wikipedia:Dirichlet integral#Via the Dirichlet kernel|вот так]]. | ||
}} | }} | ||
Строка 405: | Строка 453: | ||
Тогда: <tex>\forall Y_0 \in Y \displaystyle\int\limits_{Y_0} f(y) dv = \int\limits_{\phi^{-1}(Y_0)} f(\phi(x)) \cdot w(x) d\mu(x)</tex> | Тогда: <tex>\forall Y_0 \in Y \displaystyle\int\limits_{Y_0} f(y) dv = \int\limits_{\phi^{-1}(Y_0)} f(\phi(x)) \cdot w(x) d\mu(x)</tex> | ||
|proof= | |proof= | ||
+ | Это очевидно верно, если <tex>f -</tex> характеристическая функция. По линейности интеграла это также верно и для простой неотрицательной <tex>f</tex>. | ||
+ | |||
+ | Для произвольной неотрицательной <tex>f</tex> рассмотрим последовательность простых неотрицательных функций <tex>f_n</tex> и по теореме Леви (предельный переход) теорем доказана для неотрицательных <tex>f</tex>. | ||
+ | |||
+ | Для отрицательных там надо что-то ещё сделать)))) | ||
}} | }} | ||
Текущая версия на 19:14, 12 апреля 2016
Содержание
- 1 Определения
- 1.1 Условие L_loc
- 1.2 Образ меры при отображении
- 1.3 Взвешенный образ меры
- 1.4 Плотность одной меры по отношению к другой
- 1.5 Заряд
- 1.6 Множество положительности заряда
- 1.7 Мера, абсолютно непрерывная по отношению к другой мере
- 1.8 Произведение мер
- 1.9 Сечение множества
- 1.10 Функция распределения
- 1.11 Интегральные неравенства Гёльдера и Минковского
- 1.12 Интеграл комплекснозначной функции
- 1.13 Пространство $L^p(E,\mu)$
- 1.14 Пространство $L^\infty(E,\mu)$
- 1.15 Существенный супремум
- 1.16 Фундаментальная последовательность, полное пространство
- 1.17 Плотное множество
- 1.18 Финитная функция
- 1.19 Гильбертово пространство
- 1.20 Ортогональная система, ортонормированная система векторов, примеры
- 1.21 Сходящийся ряд в гильбертовом пространстве
- 1.22 Коэффициенты Фурье, ряд Фурье
- 1.23 Базис, полная, замкнутая ОС
- 1.24 Тригонометрический ряд
- 1.25 Коэффициенты Фурье функции
- 1.26 Ядро Дирихле, ядро Фейера
- 1.27 Свёртка
- 1.28 Аппроксимативная единица
- 1.29 Усиленная аппроксимативная единица
- 1.30 Метод суммирования средними арифметическими
- 1.31 Измеримое множество на простой двумерной поверхности в R^3
- 1.32 Мера Лебега на простой двумерной поверхности в R^3
- 1.33 Поверхностный интеграл первого рода
- 1.34 Кусочно-гладкая поверхность в ℝ3
- 1.35 Сторона поверхности
- 1.36 Задание стороны поверхности с помощью касательных реперов
- 1.37 Интеграл II рода
- 1.38 Ориентация контура, согласованная со стороной поверхности
- 1.39 Ротор, дивергенция векторного поля
- 1.40 Соленоидальное векторное поле
- 2 Теоремы
- 2.1 Теорема об интегрировании положительных рядов
- 2.2 Абсолютная непрерывность интеграла
- 2.3 Теорема Лебега о мажорированной сходимости для случая сходимости по мере
- 2.4 Теорема Лебега о мажорированной сходимости для случая сходимости почти везде
- 2.5 Теорема Фату
- 2.6 Теорема Лебега о непрерывности интеграла по параметру
- 2.7 Правило Лейбница дифференцирования интеграла по параметру
- 2.8 Вычисление интеграла Дирихле
- 2.9 Теорема о вычислении интеграла по взвешенному образу меры
- 2.10 Критерий плотности
- 2.11 Лемма о множествах вполне положительности заряда
- 2.12 Теорема Радона — Никодима
- 2.13 Лемма об оценке мер образов кубов из окрестности точки дифференцируемости
- 2.14 Теорема о преобразовании меры при диффеоморфизме
- 2.15 Теорема о гладкой замене переменной в интеграле Лебега
- 2.16 Теорема о произведении мер
- 2.17 Принцип Кавальери
- 2.18 Теорема Тонелли
- 2.19 Формула для Бета-функции
- 2.20 Теорема Фубини
- 2.21 Объем шара в R^m
- 2.22 Теорема о вычислении интеграла по мере Бореля — Стилтьеса (с леммой)
- 2.23 Теорема о вложении пространств L^p
- 2.24 Полнота L^p
- 2.25 Плотность в L^p множества ступенчатых функций
- 2.26 Лемма Урысона
- 2.27 Плотность в L^p непрерывных финитных функций
- 2.28 Теорема о непрерывности сдвига
- 2.29 Теорема о свойствах сходимости в гильбертовом пространстве
- 2.30 Теорема о коэффициентах разложения по ортогональной системе
- 2.31 Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя
- 2.32 Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля
- 2.33 Теорема о характеристике базиса
- 2.34 Лемма о вычислении коэффициентов тригонометрического ряда
- 2.35 Теорема Римана — Лебега
- 2.36 Принцип локализации Римана
- 2.37 Признак Дини. Следствия
- 2.38 Корректность определения свертки
- 2.39 Свойства свертки функции из L^p с функцией из L^q
- 2.40 Теорема о свойствах аппроксимативной единицы
- 2.41 Теорема Коши о перманентности метода средних арифметических
- 2.42 Теорема Фейера
- 2.43 Полнота тригонометрической системы
- 2.44 Формула Грина
- 2.45 Формула Стокса
- 2.46 Формула Гаусса — Остроградского
- 2.47 Бескоординатное определение ротора
- 2.48 Бескоординатное определение дивергенции
- 2.49 Описание соленоидальных полей в терминах дивергенции
Определения
Условие L_loc
Определение: |
Тогда удовлетворяет в точке | и — суммируемая, что
Образ меры при отображении
Определение: |
Пусть
|
Взвешенный образ меры
Определение: |
|
Плотность одной меры по отношению к другой
Определение: |
|
Заряд
Определение: |
Тогда — заряд | не обязательно и обладает свойством счётной аддитивности
Множество положительности заряда
Определение: |
— множество положительности | (заряд неотрицателен)
Мера, абсолютно непрерывная по отношению к другой мере
Определение: |
Тогда — абсолютно непрерывная по отношению к мере |
Произведение мер
Определение: |
|
Сечение множества
Определение: |
Пусть
|
Функция распределения
Определение: |
|
Интегральные неравенства Гёльдера и Минковского
Теорема (Гёльдер): |
— пространство с мерой; . Тогда |
Теорема (Минковский): |
Пусть — пространство с мерой, и функции . Тогда , и более того:
|
Интеграл комплекснозначной функции
Теорема: |
. Тогда:
|
Пространство $L^p(E,\mu)$
Определение: |
— множество измеримых функций, почти везде конечных на . |
Определение: |
. |
Пространство $L^\infty(E,\mu)$
Определение: |
Существенный супремум
Определение: |
при почти всех |
Фундаментальная последовательность, полное пространство
Определение: |
Последовательность
| называется фундаментальной в , если при , т.е.
Плотное множество
Определение: |
Или, эквивалентно, любой шар — (всюду) плотно в , если для любого открытого мн-ва . содержит точки из . | — метрическое пространство.
Финитная функция
Определение: |
— финитная в , если она равна нулю вне некоторого шара. |
Гильбертово пространство
Определение: |
— полное (любая фундаментальная последовательность сходится в этом пространстве) линейное пространство со скалярным произведением. Под полнотой понимается полнота относительно метрики, порождённой скалярным произведением. |
Определение: |
| — гильбертово пространство:
Ортогональная система, ортонормированная система векторов, примеры
Определение: |
Система векторов | называется ортогональной, если
Определение: |
Если к тому же | — тогда ортонормированная система
Пример: |
Стандартный базис евклидового пространства — ортонормированная система |
Пример: |
— ортогональная система. — ортонормированная система в |
Пример: |
— ортонормированная система в над |
Сходящийся ряд в гильбертовом пространстве
Определение: |
Ряд сходится, если существует элемент из гильбертового пространства, являющийся пределом частичных сумм. |
Коэффициенты Фурье, ряд Фурье
Определение: |
, тогда — коэффициенты Фурье для , а ряд — ряд Фурье |
Базис, полная, замкнутая ОС
Определение: |
|
Тригонометрический ряд
Определение: |
— тригонометрический полином степени . |
Определение: |
— тригонометрический ряд. |
Коэффициенты Фурье функции
Определение: |
Коэффициенты Фурье функции Можно вычислить по формулам: | — из формулы тригонометрического ряда.
Ядро Дирихле, ядро Фейера
Определение: |
— ядро Фейера | — ядро Дирихле,
Свёртка
Определение: |
— свёртка. |
Аппроксимативная единица
Определение: |
определена функция , удовлетворяющая свойствам:
| — пред. точка .
Усиленная аппроксимативная единица
Определение: |
Заменим последнюю аксиому в предыдущем определении на следующую:
|
Метод суммирования средними арифметическими
Определение: |
Измеримое множество на простой двумерной поверхности в R^3
Мера Лебега на простой двумерной поверхности в R^3
Определение: |
Мера в — взвешенный образ меры Лебега в с весом | .
Поверхностный интеграл первого рода
Определение: |
Кусочно-гладкая поверхность в ℝ3
Определение: |
| называется кусочно-гладкой, если представляет собой объединение:
Сторона поверхности
Определение: |
Сторона поверхности — это непрерывное поле единичных нормалей на поверхности |
Задание стороны поверхности с помощью касательных реперов
Определение: |
Репер — упорядоченный набор из двух (неколлинеарных) касательных векторов к поверхности |
Определение: |
Поле реперов | , если — касательный репер
Определение: |
Сторона поверхности задаётся с помощью касательных реперов: |
Интеграл II рода
Определение: |
Ориентация контура, согласованная со стороной поверхности
Определение: |
Ориентация контура называется согласованной со стороной поверхности, если векторное произведение нормали и вектора скорости направлено внутрь контура. |
Ротор, дивергенция векторного поля
Определение: |
Пусть | — гладкое векторное поле в некоторой области . Тогда
Соленоидальное векторное поле
Определение: |
— соленоидальное, если существует векторный потенциал , т.е. . |
Теоремы
Теорема об интегрировании положительных рядов
Теорема: |
Доказательство: |
Пусть |
Абсолютная непрерывность интеграла
Теорема: |
Доказательство: |
|
Теорема Лебега о мажорированной сходимости для случая сходимости по мере
Теорема: |
|
Доказательство: |
|
Теорема Лебега о мажорированной сходимости для случая сходимости почти везде
Теорема: |
|
Доказательство: |
Легко видеть, что Кстати, при п.в. .Рассмотрим ф-ии — возр.С другой стороны, |
Теорема Фату
Теорема: |
Тогда |
Доказательство: |
Теорема Лебега о непрерывности интеграла по параметру
Теорема: |
|
Доказательство: |
Рассмотрим Применим теорему Лебега для , где . . |
Правило Лейбница дифференцирования интеграла по параметру
Теорема: |
|
Доказательство: |
Пусть Теорема Лагранжа о среднем применённая к удовлетворяет условию , поэтому найдутся такие и , что при почти всех и при . на даст . Поэтому . |
Вычисление интеграла Дирихле
Теорема: |
Доказательство: |
Можно, например, вот так. |
Теорема о вычислении интеграла по взвешенному образу меры
Теорема: |
|
Доказательство: |
Это очевидно верно, если характеристическая функция. По линейности интеграла это также верно и для простой неотрицательной .Для произвольной неотрицательной Для отрицательных там надо что-то ещё сделать)))) рассмотрим последовательность простых неотрицательных функций и по теореме Леви (предельный переход) теорем доказана для неотрицательных . |
Критерий плотности
Теорема: |
- плотность относительно |
Доказательство: |
|
Лемма о множествах вполне положительности заряда
Теорема: | |||||||
Тогда — множество положительности: | |||||||
Доказательство: | |||||||
| |||||||
Теорема Радона — Никодима
Теорема (Радон, Никодим): | ||||||
Тогда — сумм. отн. — плотность относительно . | ||||||
Доказательство: | ||||||
Единственность
СуществованиеTBD | ||||||
Лемма об оценке мер образов кубов из окрестности точки дифференцируемости
Теорема: |
Пусть |
Теорема о преобразовании меры при диффеоморфизме
Теорема: |
Тогда |
Теорема о гладкой замене переменной в интеграле Лебега
Теорема: |
Пусть |
Теорема о произведении мер
Теорема: |
Принцип Кавальери
Теорема: |
|
Теорема Тонелли
Теорема: |
|
Формула для Бета-функции
Теорема: |
Доказательство: |
Вычислим интеграл С одной стороны, , гдеС другой стороны, переходя к полярным координатам, получим: Сделаем замену : |
Теорема Фубини
Теорема: |
— -сумм. Тогда:
|
Доказательство: |
|
Объем шара в R^m
Теорема: |
Теорема о вычислении интеграла по мере Бореля — Стилтьеса (с леммой)
Лемма: |
|
Доказательство: |
|
Теорема: |
Остальное из прошлой леммы |
Доказательство: |
Ну тут тип просто замена в интеграле))) |
Теорема о вложении пространств L^p
Теорема: |
|
Доказательство: |
|
Полнота L^p
Теорема: |
— полное |
Доказательство: |
Очевидно, что Рассмотрим
Т.е. |
Плотность в L^p множества ступенчатых функций
Теорема: |
в конечно множество ступенчатых функций плотно |
Доказательство: |
|
Лемма Урысона
Теорема: |
Тогда (непрырывная) |
Доказательство: |
— дв. рац. — непр. — дв. рац. |
Плотность в L^p непрерывных финитных функций
Теорема: |
всюду плотно в |
Теорема о непрерывности сдвига
Теорема: |
|
Теорема о свойствах сходимости в гильбертовом пространстве
Теорема: |
Пусть есть ГП
|
Теорема о коэффициентах разложения по ортогональной системе
Теорема: |
Ортогональная система. Тогда:
|
Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бесселя
Теорема: |
частичные суммы ряда Фурье
Тогда:
Следствие: (Неравенство Бесселя) |
Теорема Рисса — Фишера о сумме ряда Фурье. Равенство Парсеваля
Теорема: |
|
Теорема о характеристике базиса
Теорема: |
|
Лемма о вычислении коэффициентов тригонометрического ряда
Теорема: |
Пусть в пространствеТогда: |
Теорема Римана — Лебега
Теорема: |
Тогда (То же самое можно и с и вместо ) |
Принцип локализации Римана
Теорема: |
|
Признак Дини. Следствия
Теорема: |
Пусть |
Корректность определения свертки
Теорема: |
Свойства свертки функции из L^p с функцией из L^q
Теорема: |
Тогда |
Теорема о свойствах аппроксимативной единицы
Теорема: |
Тогда :
|
Теорема Коши о перманентности метода средних арифметических
Теорема: |
(по методу средних арифметических) |
Доказательство: |
(по методу средних арифметических) |
Теорема Фейера
Теорема: |
3 пункта:
|
Полнота тригонометрической системы
Теорема: |
Тригонометрическая система полна в (Следствие теоремы Фейера) |
Формула Грина
Теорема: |
|
Формула Стокса
Теорема: |
|
Формула Гаусса — Остроградского
Теорема: |
— гл. век. поле в . Тогда |
Бескоординатное определение ротора
Теорема: |
Бескоординатное определение дивергенции
Теорема: |
Описание соленоидальных полей в терминах дивергенции
Теорема: |