Основные понятия и теорема Пикара — различия между версиями
(→Особые точки и особые решения) |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 3 участников) | |||
Строка 51: | Строка 51: | ||
<tex>...</tex><br> | <tex>...</tex><br> | ||
<tex>\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant </tex> <tex> l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}</tex><br> | <tex>\left | y_{n} - y_{n - 1} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y_{n - 2})\right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y_{n - 2}\right |d\bar{x} \leqslant </tex> <tex> l \int_{x_{0}}^{x}\frac{M}{l} \frac{(l \left | \bar{x} - x_{0} \right |)^{n - 1}}{(n - 1)!}d\bar{x} = \frac{M}{l} \frac{(l\left | x - x_{0} \right |)^{n}}{n!} \leqslant \frac{M}{l} \frac{(lh)^{n}}{n!}</tex><br> | ||
− | Теперь проверим сходимость полученного числового ряда: <tex> \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).</tex> Видим, что числовой ряд сходистя, значит исходный функциональный ряд равомерно сходится к некоторой функции <tex>\bar{y}(x)</tex>, которая будет непрерывна и | + | Теперь проверим сходимость полученного числового ряда: <tex> \frac{M}{l} (lh + \frac{(lh)^{2}}{2!} + \frac{(lh)^{3})}{3!} + \dotsb) = \frac{M}{l} (e^{lh} - 1).</tex> Видим, что числовой ряд сходистя, значит исходный функциональный ряд равомерно сходится к некоторой функции <tex>\bar{y}(x)</tex>, которая будет непрерывна и ограничена в силу непрерывности и ограниченности <tex>y_{n}(x)</tex> ( d), e)). |
<br> Теперь проверим, что <tex>\bar{y}(x)</tex> является решением задачи Коши. т.к. <tex>y_{n}(x) \rightrightarrows \bar{y}(x) \:\: \Leftrightarrow \: \forall \varepsilon > 0 \: \exists N \in \mathbb{N}: \forall n > N \Rightarrow \left | y_{n}(x) - \bar{y}(x) \right | < \varepsilon, \: </tex><tex>\: \forall x \in (x_{0} - h, x_{0} + h).</tex><br> | <br> Теперь проверим, что <tex>\bar{y}(x)</tex> является решением задачи Коши. т.к. <tex>y_{n}(x) \rightrightarrows \bar{y}(x) \:\: \Leftrightarrow \: \forall \varepsilon > 0 \: \exists N \in \mathbb{N}: \forall n > N \Rightarrow \left | y_{n}(x) - \bar{y}(x) \right | < \varepsilon, \: </tex><tex>\: \forall x \in (x_{0} - h, x_{0} + h).</tex><br> | ||
− | <tex> | + | <tex>\left | \int_{x_{0}}^{x} (f(\bar{x}, y_{n}) - f(\bar{x}, \bar{y}))d\bar{x} \right | \leqslant l \int_{x_{0}}^{x}\left | y_{n} - \bar{y} \right |d\bar{x} \leqslant l \varepsilon h</tex>. Видим, что для функции <tex>\bar{y}(x)</tex> выполяется <tex>\bar{y}(x) = y_{0} + \int_{x_{0}}^{x}f(\bar{x},\bar{y})d\bar{x}</tex> значит, она будет решением.<br> |
Докажем единственность. <br> | Докажем единственность. <br> | ||
Пусть <tex>\exists y^{\ast} = y^{\ast}(x) \: - </tex> решение задачи Коши: <tex>y^{\ast} \not\equiv y</tex>, оценим величину <tex>\left | y_{n} - y^{\ast} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y^{\ast}) \right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y^{\ast} \right | d\bar{x} </tex><br> | Пусть <tex>\exists y^{\ast} = y^{\ast}(x) \: - </tex> решение задачи Коши: <tex>y^{\ast} \not\equiv y</tex>, оценим величину <tex>\left | y_{n} - y^{\ast} \right | \leqslant \int_{x_{0}}^{x} \left | f(\bar{x}, y_{n - 1}) - f(\bar{x}, y^{\ast}) \right | d\bar{x} \leqslant l \int_{x_{0}}^{x}\left | y_{n - 1} - y^{\ast} \right | d\bar{x} </tex><br> | ||
− | так как <tex>\left | y_{1} - y^{\ast} \right | \leqslant l \int_{x_{0}}^{x}\left | y_{0} - y^{\ast} \right | d\bar{x} \leqslant M l h</tex>, следовательно <tex>\left | y_{n} - y^{\ast} \right | \leqslant \frac{l^{n}Mh^{n}}{n!}</tex>, значит левая часть стремится к 0 при <tex>n \ | + | так как <tex>\left | y_{1} - y^{\ast} \right | \leqslant l \int_{x_{0}}^{x}\left | y_{0} - y^{\ast} \right | d\bar{x} \leqslant M l h</tex>, следовательно <tex>\left | y_{n} - y^{\ast} \right | \leqslant \frac{l^{n}Mh^{n}}{n!}</tex>, значит левая часть стремится к 0 при <tex>n \rightarrow +\infty</tex> и по единственности предела <tex>y^{\ast} \equiv y</tex>. Противоречие. }} |
+ | |||
==Особые точки и особые решения== | ==Особые точки и особые решения== | ||
− | {{Определение|definition = Пусть уравнение 1-го порядка удовлетворяет условию теоремы Пикара, тогда | + | {{Определение|definition = Пусть уравнение 1-го порядка удовлетворяет условию теоремы Пикара, тогда любая точка из области D называется обыкновенной точкой. Иначе она называется особой.}} |
{{Nota Bene|notabene= Через особые точки не проходит ни одной кривой, либо их не меньше двух.}} | {{Nota Bene|notabene= Через особые точки не проходит ни одной кривой, либо их не меньше двух.}} | ||
+ | {{Определение|definition= Особым решением называется решение, которое не удовлетворяет условию единственности.}} | ||
+ | {{Nota Bene|notabene= Особое решение обладает тем свойством, что в любой окрестности любой его точки существуют, по крайней мере, две интегральные кривые, проходящие через эту точку.}} |
Текущая версия на 19:21, 4 сентября 2022
Основные понятия и теорема Пикара
Определения
Определение: |
Соотношение вида | называется обыкновенным дифференциальным уравнением (ОДУ).
Определение: |
Порядок наивысшей производной входящей в уравнение называется порядком уравнения. |
Определение: |
дифференциальное уравнение 1-го порядка |
Определение: |
Решением дифференциального уравнения | называется функция
Определение: |
уравнение в нормальной форме. |
Определение: |
Изоклиной ДУ | называется кривая определяемая равенством , где .
Определение: |
Общим решением ДУ 1-го порядка | для любого наперед заданного значения решение ДУ
Задача Коши
Определение: |
Задача нахождения решения дифференциального уравнения называется задачей Коши (начальной задачей) | , которое удовлетворяет следующим условиям:
в некоторых случаях удается упростить решение задачи Коши наложив ограничения на
Определение: |
условие Липшица: для некоторой константы |
Очевидно, условие Липшица выполняется при условии
.Теорема (Пикар): |
Пусть удовлетворяет условию Липшица и , тогда существует единственное решение задачи Коши
, где . |
Доказательство: |
Переформулируем задачу Коши следующим образом: |
Особые точки и особые решения
Определение: |
Пусть уравнение 1-го порядка удовлетворяет условию теоремы Пикара, тогда любая точка из области D называется обыкновенной точкой. Иначе она называется особой. |
N.B.: |
Через особые точки не проходит ни одной кривой, либо их не меньше двух. |
Определение: |
Особым решением называется решение, которое не удовлетворяет условию единственности. |
N.B.: |
Особое решение обладает тем свойством, что в любой окрестности любой его точки существуют, по крайней мере, две интегральные кривые, проходящие через эту точку. |