Отношение вершинной двусвязности — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показаны 3 промежуточные версии 3 участников) | |||
Строка 6: | Строка 6: | ||
Заметим, что если имеется два различных двусвязных ребра, то они лежат на некотором вершинно простом цикле. | Заметим, что если имеется два различных двусвязных ребра, то они лежат на некотором вершинно простом цикле. | ||
+ | {{Определение | ||
+ | |definition= | ||
+ | '''Блоками''' (англ. ''block''), или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых — классы эквивалентности вершинной двусвязности, а множества вершин {{---}} множества всевозможных концов ребер из соответствующих классов. | ||
+ | }} | ||
{{Теорема | {{Теорема | ||
Строка 23: | Строка 27: | ||
''Замечание.'' Рассмотрим следующее определение: вершины <tex>u</tex> и <tex>v</tex> называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным. | ''Замечание.'' Рассмотрим следующее определение: вершины <tex>u</tex> и <tex>v</tex> называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Точки сочленения== | ==Точки сочленения== | ||
Строка 42: | Строка 40: | ||
== См. также == | == См. также == | ||
− | * [[Отношение | + | * [[Отношение рёберной двусвязности]] |
==Источники информации== | ==Источники информации== |
Текущая версия на 19:33, 4 сентября 2022
Вершинная двусвязность
Определение: |
Два ребра графа называются вершинно двусвязными (англ. vertex biconnected), если существуют вершинно непересекающиеся пути, соединяющие их концы. |
Заметим, что если имеется два различных двусвязных ребра, то они лежат на некотором вершинно простом цикле.
Определение: |
Блоками (англ. block), или компонентами вершинной двусвязности графа, называют его подграфы, множества ребер которых — классы эквивалентности вершинной двусвязности, а множества вершин — множества всевозможных концов ребер из соответствующих классов. |
Теорема: |
Отношение вершинной двусвязности является отношением эквивалентности на ребрах. |
Доказательство: |
Рефлексивность: В данном случае имеем 2 пустых пути, которые, очевидно, не пересекаются. Симметричность: Следует из симметричности определения. Транзитивность: Пусть имеем ребра: вершинно двусвязно с , вершинно двусвязно с , при этом все они различны. Ребра и лежат на вершинно простом цикле . Будем считать, что существуют непересекающиеся пути , (ситуация, когда они идут наоборот, разбирается аналогично). Пусть — первая вершина на , лежащая также на , — первая вершина на , лежащая на . Проделав пути от до и от до , далее пойдем по циклу в нужные (различные) стороны, чтобы достичь и . То есть вершинно двусвязно с . |
Замечание. Рассмотрим следующее определение: вершины
и называются вершинно двусвязными, если между ними существуют 2 пути, не пересекающихся по вершинам, за исключением концов. Это определение не может претендовать на корректность, так как в этом случае отношение вершинной двусвязности перестанет быть транзитивным.Точки сочленения
Определение: |
Точка сочленения (англ. articulation points) графа | — вершина, принадлежащая как минимум двум блокам .
Определение: |
Точка сочленения графа | — вершина, при удалении которой в увеличивается число компонент связности.
См. также
Источники информации
- Харари, Ф. Теория графов. — М.: Книжный дом «ЛИБРОКОМ», 2009
- Википедия — Двусвязный граф