Верхние и нижние оценки хроматического числа — различия между версиями
(→Нижняя оценка количеством ребер и количеством вершин) |
м (rollbackEdits.php mass rollback) |
||
(не показано 7 промежуточных версий 3 участников) | |||
Строка 5: | Строка 5: | ||
|proof= | |proof= | ||
Опишем на графе следующий алгоритм раскраски: | Опишем на графе следующий алгоритм раскраски: | ||
− | *Из произвольной вершины <tex>v</tex> | + | *Из произвольной вершины <tex>v</tex> запустим алгоритм поиска в глубину. Пусть <tex>T</tex> {{---}} дерево обхода глубина графа <tex>G</tex> с корнем в вершине <tex>v</tex>. |
− | *Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \ | + | *Произвольную вершину <tex>u</tex>, покрасим в цвет <tex>dist(v,u)</tex> <tex> \bmod </tex> <tex> (\Delta + 1)</tex>, где <tex>dist(v,u)</tex>{{---}} расстояние между вершинами <tex>u,v</tex> в графe <tex>T</tex>. |
Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | Докажем от противного, что после выполнения описанного алгоритма граф <tex>G</tex> будет правильно раскрашен. | ||
− | Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a, b </tex> одного цвета. Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски.Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>.Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>.Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a, b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>. | + | Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины <tex> a, b </tex> одного цвета. Пусть <tex>color(v)</tex> {{---}} цвет вершины после выполнения алгоритма раскраски. Заметим, что для произвольной вершины графа <tex>p</tex>, <tex>dist(v,p) = color(p) + n(\Delta + 1)</tex> , <tex>n \geqslant 0 </tex>. Тогда, <tex>dist(v,a) - dist(v,b) = k(\Delta + 1)</tex>. Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то <tex> k \geqslant 1</tex>. То есть, вершины <tex>a, b</tex> лежат на простом цикле длины по крайней мере <tex>\Delta + 2</tex>. Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем <tex>\Delta</tex>. |
Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex> | Таким образом в графе <tex>G</tex> после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из <tex>\Delta + 1</tex>, то есть <tex>G</tex> правильно раскрашен в <tex>\Delta + 1</tex> цвет, следовательно <tex>\chi(G) \leqslant \Delta(G) + 1</tex> | ||
}} | }} | ||
+ | |||
==Нижняя оценка числом независимости == | ==Нижняя оценка числом независимости == | ||
{{Определение | {{Определение | ||
Строка 36: | Строка 37: | ||
{{Лемма | {{Лемма | ||
|about = верхняя оценка | |about = верхняя оценка | ||
− | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>m</tex> ребрами.Тогда, <tex | + | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>m</tex> ребрами.Тогда, <tex>\chi(G) \leqslant \dfrac{1}{2} +\sqrt{2m + \dfrac{1}{4}}</tex>. |
|proof= | |proof= | ||
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет). | Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет). | ||
− | Тогда, <tex | + | Тогда, <tex>\dfrac{1}{2}\chi(\chi-1) \leqslant m \Rightarrow (\chi - \dfrac{1}{2})^2 \leqslant 2m + \dfrac{1}{4} \Rightarrow \chi(G) \leqslant \dfrac{1}{2} +\sqrt{2m + \dfrac{1}{4}} </tex>. |
}} | }} | ||
Строка 45: | Строка 46: | ||
{{Лемма | {{Лемма | ||
|about = нижняя оценка Геллера | |about = нижняя оценка Геллера | ||
− | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами. Тогда, <tex | + | |statement= Пусть <tex>G(V,E)</tex> {{---}} произвольный связный неориентированный граф с <tex>n</tex> вершинами и <tex>m</tex> ребрами. Тогда, <tex>\dfrac{n^2}{n^2 - 2m} \leqslant \chi(G) </tex>. |
|proof= | |proof= | ||
Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. | Пусть, <tex>V_1,V_2...V_\chi</tex> множеств вершин окрашенных в соответствующие цвета при правильно покраски графа <tex>G</tex>. | ||
− | <tex | + | <tex>m \leqslant \dfrac{1}{2}n(n - 1) - \dfrac{1}{2}\sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1) \Rightarrow \dfrac{n^2}{n^2 - 2m} \leqslant \dfrac{n^2}{n^2 -n(n - 1) + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \dfrac{n^2}{n + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \dfrac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i| + \sum\limits^{\chi}_{i = 1}|V_i|(|V_i| - 1)} = \dfrac{n^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} = \dfrac{(\sum\limits^{\chi}_{i = 1}|V_i|)^2}{\sum\limits^{\chi}_{i = 1}|V_i|^2} \leqslant \chi</tex>. |
}} | }} | ||
− | == | + | ==См. также== |
*[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]] | *[[Хроматическое_число_планарного_графа|Хроматическое число планарного графа]] | ||
Текущая версия на 19:15, 4 сентября 2022
Содержание
Верхняя оценка длиной максимального нечетного цикла
Лемма (оценка хроматического числа длиной максимального нечётного цикла): |
Пусть — произвольный связный неориентированный граф и — длина максимального простого цикла графа , . Тогда, . |
Доказательство: |
Опишем на графе следующий алгоритм раскраски:
Докажем от противного, что после выполнения описанного алгоритма граф Таким образом в графе будет правильно раскрашен. Предположим, что после выполнения алгоритма покраски в графе существует ребро, соединяющее вершины одного цвета. Пусть — цвет вершины после выполнения алгоритма раскраски. Заметим, что для произвольной вершины графа , , . Тогда, . Поскольку в дереве dfs между вершинами находящимися на одинаковом расстоянии от корня нет перекрестных ребер, то . То есть, вершины лежат на простом цикле длины по крайней мере . Получается противоречие с условием потому, что длина максимального простого цикла получается больше чем . после выполнения алгоритма раскраски нет вершин одного цвета соединенных ребром и при этом каждая вершина покрашена в один из , то есть правильно раскрашен в цвет, следовательно |
Нижняя оценка числом независимости
Определение: |
Подмножество | вершин графа называется независимым, если любые две вершины из не смежны в
Определение: |
Число независимости | графа — и независимо в G
Лемма (нижняя оценка): |
Пусть — произвольный связный неориентированный граф с вершинами .Тогда, . |
Доказательство: |
Пусть, Заметим, что для произвольного множеств вершин окрашенных в соответствующие цвета при правильно покраски графа .Каждое из — независимое множество (поскольку вершины множества покрашены в один цвет при правильной покраски графа , следовательно, они попарно не смежны внутри множества ). , (т.к независимое множество). То есть, , следовательно . |
Верхняя оценка количеством ребер
Лемма (верхняя оценка): |
Пусть — произвольный связный неориентированный граф с ребрами.Тогда, . |
Доказательство: |
Пусть, Тогда, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . Заметим, что между любыми двумя различными множествами существует хотя бы одно ребро (в противном случаи эти множества можно было бы покрасить в один цвет). . |
Нижняя оценка количеством ребер и количеством вершин
Лемма (нижняя оценка Геллера): |
Пусть — произвольный связный неориентированный граф с вершинами и ребрами. Тогда, . |
Доказательство: |
Пусть, множеств вершин окрашенных в соответствующие цвета при правильно покраски графа . . |