Матричный умножитель — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Схема)
м (rollbackEdits.php mass rollback)
 
(не показано 40 промежуточных версий 2 участников)
Строка 1: Строка 1:
== Назначение ==
 
 
Матричный умножитель предназначен для арифметического умножения двух двоичных чисел произвольной разрядности.
 
 
 
== Принцип работы ==
 
== Принцип работы ==
 
==== Умножение в бинарной системе ====
 
==== Умножение в бинарной системе ====
[[Файл:mult_bin.png|180px|right]]
+
[[Файл:mult_bin.png|300px|right|thumb|''Умножение в столбик'']]
  
Умножение в бинарной системе счисления происходит точно так же, как в десятичной -  по схеме "умножения столбиком".  
+
Умножение в бинарной системе счисления происходит точно так же, как в десятичной {{---}} по схеме ''умножения столбиком''.  
Если множимое - <tex>k</tex> разрядное, а множитель -<tex>n</tex> разрядный, то для формирования произведения требуется вычислить <tex>n</tex>  частичных  произведений и сложить их между собой.
+
Если множимое {{---}} <tex>k</tex> разрядное, а множитель {{---}} <tex>n</tex> разрядный, то для формирования произведения требуется вычислить <tex>n</tex>  частичных  произведений и сложить их между собой.
  
 
===== Вычисление частичных произведений =====
 
===== Вычисление частичных произведений =====
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами "AND" - конъюнкторами.
+
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами <tex>\&</tex> {{---}} конъюнкторами.
Каждое частичное произведение (<tex>m_i</tex>) - это результат выполнения <tex>k</tex> логических операции "AND" ( между текущим <tex>i ( i=1..n)</tex> разрядом множителя и всеми <tex>k</tex> разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:  
+
Каждое частичное произведение <tex>(m_i)</tex> {{---}} это результат выполнения <tex>k</tex> логических операции <tex>\&</tex> ( между текущим <tex>i</tex>, где  <tex>i=1..n</tex>, разрядом множителя и всеми <tex>k</tex> разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:  
  
<tex>m_i = 2^{i - 1} (a \wedge b_i), где i=1..n</tex>
+
<tex>m_i = 2^{i - 1} (a \& b_i), (i=1..n)</tex>
  
 
===== Суммирование частичных произведений =====
 
===== Суммирование частичных произведений =====
Строка 20: Строка 16:
  
 
==== Схема ====
 
==== Схема ====
[[Файл:Mult_3.png|700px|right|Схема матричного умножителя]]
+
[[Файл:Mult_3.png|700px|right|thumb|Схема матричного умножителя]]
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх-разрядных чисел приведена на рисунке.  
+
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх {{---}} разрядных чисел приведена на рисунке.  
Формирование частичных произведений осуществляется посредством логических элементов "AND".
+
Формирование частичных произведений осуществляется посредством логических элементов <tex>\&</tex>.
 
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата.
 
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата.
Разрядность результата -<tex>l</tex> определяется разрядностью множителя-<tex>n</tex> и множимого-<tex>k</tex>:  
+
Разрядность результата {{---}} <tex>l</tex> определяется разрядностью множителя {{---}} <tex>n</tex> и множимого {{---}} <tex>k</tex>:  
  
 
<tex> l=n+k </tex>.
 
<tex> l=n+k </tex>.
  
  
Все конъюнкторы работаю параллельно.
+
Все конъюнкторы работают параллельно.
 
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
 
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
 
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
 
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
 
Время выполнения операции умножения определяется временем распространения переносов до  выходного разряда <tex> p8 </tex>.
 
Время выполнения операции умножения определяется временем распространения переносов до  выходного разряда <tex> p8 </tex>.
  
==== "Матричный умножитель" ====
+
==== '''Матричный умножитель''' ====
Если внимательно посмотреть на схему умножителя, то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа <tex>A</tex> и числа <tex>B</tex>. В точках пересечения этих проводников находятся логические элементы “И”. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.
+
Если внимательно посмотреть на схему '''матричного умножителя''' (англ. ''binary multiplier''), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа <tex>A</tex> и числа <tex>B</tex>. В точках пересечения этих проводников находятся логические элементы <tex>\&</tex>. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.
 +
 
 
==Схемная сложность==
 
==Схемная сложность==
 
Частичные произведения вычисляются за <tex>n</tex> шагов. Сложение с вычислением переносов включает <tex>n - 1</tex> шаг. Последнее сложение можно выполнить за <tex>O(\log n)</tex>.  
 
Частичные произведения вычисляются за <tex>n</tex> шагов. Сложение с вычислением переносов включает <tex>n - 1</tex> шаг. Последнее сложение можно выполнить за <tex>O(\log n)</tex>.  
Строка 49: Строка 46:
 
Есть и более быстрые способы умножения двух чисел, например умножение с помощью [[дерево Уоллеса|дерева Уоллеса]], которое работает <tex>O(\log n)</tex>.
 
Есть и более быстрые способы умножения двух чисел, например умножение с помощью [[дерево Уоллеса|дерева Уоллеса]], которое работает <tex>O(\log n)</tex>.
  
== Литература и источники ==
+
== См. также ==
* Е. Угрюмов "Цифровая схемотехника" 2001г.
+
*[[Дерево Уоллеса]]
 +
*[[Двоичный каскадный сумматор]]
  
* Дк. Ф. Уэйкерли "Проектирование цифровых устройств, том 1." 2002г.  
+
== Источники информации ==
 +
* [http://bookfi.net/book/556972  Е. Угрюмов "Цифровая схемотехника" 2001г.]
  
* М.И. Богданович "Цифровые интегральные микросхемы" 1996г.  
+
* [http://bookfi.net/book/532753  Дк. Ф. Уэйкерли "Проектирование цифровых устройств, том 1." 2002г.]
  
* В.Л. Шило "Популярные цифровые микросхемы" 1988г.  
+
* [http://bookfi.net/book/637011 М.И. Богданович "Цифровые интегральные микросхемы" 1996г.]
  
 
* [http://library.espec.ws/section6/article46.html Схема умножителя]
 
* [http://library.espec.ws/section6/article46.html Схема умножителя]

Текущая версия на 19:27, 4 сентября 2022

Принцип работы

Умножение в бинарной системе

Умножение в столбик

Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое — [math]k[/math] разрядное, а множитель — [math]n[/math] разрядный, то для формирования произведения требуется вычислить [math]n[/math] частичных произведений и сложить их между собой.

Вычисление частичных произведений

В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами [math]\&[/math] — конъюнкторами. Каждое частичное произведение [math](m_i)[/math] — это результат выполнения [math]k[/math] логических операции [math]\&[/math] ( между текущим [math]i[/math], где [math]i=1..n[/math], разрядом множителя и всеми [math]k[/math] разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:

[math]m_i = 2^{i - 1} (a \& b_i), (i=1..n)[/math]

Суммирование частичных произведений

На этом этапе происходит сложение всех частичных произведений [math] m [/math].

Схема

Схема матричного умножителя

Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов [math]\&[/math]. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — [math]l[/math] определяется разрядностью множителя — [math]n[/math] и множимого — [math]k[/math]:

[math] l=n+k [/math].


Все конъюнкторы работают параллельно. Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора. В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом. Время выполнения операции умножения определяется временем распространения переносов до выходного разряда [math] p8 [/math].

Матричный умножитель

Если внимательно посмотреть на схему матричного умножителя (англ. binary multiplier), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа [math]A[/math] и числа [math]B[/math]. В точках пересечения этих проводников находятся логические элементы [math]\&[/math]. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.

Схемная сложность

Частичные произведения вычисляются за [math]n[/math] шагов. Сложение с вычислением переносов включает [math]n - 1[/math] шаг. Последнее сложение можно выполнить за [math]O(\log n)[/math].

В итоге суммарное время работы:

[math]O(n) + O(n) + O(\log n) = O(n) [/math]

Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.

Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.

Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает [math]O(\log n)[/math].

См. также

Источники информации