Матричный умножитель — различия между версиями
(→Схема) |
м (rollbackEdits.php mass rollback) |
||
(не показано 25 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
== Принцип работы == | == Принцип работы == | ||
==== Умножение в бинарной системе ==== | ==== Умножение в бинарной системе ==== | ||
− | [[Файл:mult_bin.png| | + | [[Файл:mult_bin.png|300px|right|thumb|''Умножение в столбик'']] |
Умножение в бинарной системе счисления происходит точно так же, как в десятичной {{---}} по схеме ''умножения столбиком''. | Умножение в бинарной системе счисления происходит точно так же, как в десятичной {{---}} по схеме ''умножения столбиком''. | ||
Строка 7: | Строка 7: | ||
===== Вычисление частичных произведений ===== | ===== Вычисление частичных произведений ===== | ||
− | В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами | + | В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами <tex>\&</tex> {{---}} конъюнкторами. |
− | Каждое частичное произведение | + | Каждое частичное произведение <tex>(m_i)</tex> {{---}} это результат выполнения <tex>k</tex> логических операции <tex>\&</tex> ( между текущим <tex>i</tex>, где <tex>i=1..n</tex>, разрядом множителя и всеми <tex>k</tex> разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле: |
− | <tex>m_i = 2^{i - 1} (a \ | + | <tex>m_i = 2^{i - 1} (a \& b_i), (i=1..n)</tex> |
===== Суммирование частичных произведений ===== | ===== Суммирование частичных произведений ===== | ||
Строка 18: | Строка 18: | ||
[[Файл:Mult_3.png|700px|right|thumb|Схема матричного умножителя]] | [[Файл:Mult_3.png|700px|right|thumb|Схема матричного умножителя]] | ||
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх {{---}} разрядных чисел приведена на рисунке. | Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх {{---}} разрядных чисел приведена на рисунке. | ||
− | Формирование частичных произведений осуществляется посредством логических элементов <tex> \ | + | Формирование частичных произведений осуществляется посредством логических элементов <tex>\&</tex>. |
Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. | Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. | ||
Разрядность результата {{---}} <tex>l</tex> определяется разрядностью множителя {{---}} <tex>n</tex> и множимого {{---}} <tex>k</tex>: | Разрядность результата {{---}} <tex>l</tex> определяется разрядностью множителя {{---}} <tex>n</tex> и множимого {{---}} <tex>k</tex>: | ||
Строка 30: | Строка 30: | ||
Время выполнения операции умножения определяется временем распространения переносов до выходного разряда <tex> p8 </tex>. | Время выполнения операции умножения определяется временем распространения переносов до выходного разряда <tex> p8 </tex>. | ||
− | ==== '''Матричный умножитель | + | ==== '''Матричный умножитель''' ==== |
− | Если внимательно посмотреть на схему умножителя, то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа <tex>A</tex> и числа <tex>B</tex>. В точках пересечения этих проводников находятся логические элементы | + | Если внимательно посмотреть на схему '''матричного умножителя''' (англ. ''binary multiplier''), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа <tex>A</tex> и числа <tex>B</tex>. В точках пересечения этих проводников находятся логические элементы <tex>\&</tex>. Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей. |
==Схемная сложность== | ==Схемная сложность== | ||
Строка 45: | Строка 45: | ||
Есть и более быстрые способы умножения двух чисел, например умножение с помощью [[дерево Уоллеса|дерева Уоллеса]], которое работает <tex>O(\log n)</tex>. | Есть и более быстрые способы умножения двух чисел, например умножение с помощью [[дерево Уоллеса|дерева Уоллеса]], которое работает <tex>O(\log n)</tex>. | ||
+ | |||
+ | == См. также == | ||
+ | *[[Дерево Уоллеса]] | ||
+ | *[[Двоичный каскадный сумматор]] | ||
== Источники информации == | == Источники информации == | ||
Строка 60: | Строка 64: | ||
[[Категория: Схемы из функциональных элементов ]] | [[Категория: Схемы из функциональных элементов ]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Текущая версия на 19:27, 4 сентября 2022
Содержание
Принцип работы
Умножение в бинарной системе
Умножение в бинарной системе счисления происходит точно так же, как в десятичной — по схеме умножения столбиком. Если множимое —
разрядное, а множитель — разрядный, то для формирования произведения требуется вычислить частичных произведений и сложить их между собой.Вычисление частичных произведений
В бинарной системе для вычисления частичного произведения можно воспользоваться логическими элементами
— конъюнкторами. Каждое частичное произведение — это результат выполнения логических операции ( между текущим , где , разрядом множителя и всеми разрядами множимого) и сдвига результата логической операции влево на число разрядов, соответствующее весу текущего разряда множителя. Матричный умножитель вычисляет частичные произведения по формуле:
Суммирование частичных произведений
На этом этапе происходит сложение всех частичных произведений
.Схема
Принципиальная схема умножителя, реализующая алгоритм двоичного умножения в столбик для двух четырёх — разрядных чисел приведена на рисунке. Формирование частичных произведений осуществляется посредством логических элементов
. Полные одноразрядные сумматоры обеспечивают формирование разрядов результата. Разрядность результата — определяется разрядностью множителя — и множимого — :.
Все конъюнкторы работают параллельно.
Полные одноразрядные сумматоры обеспечивают поразрядное сложение результатов конъюнкций и переносов из предыдущих разрядов сумматора.
В приведенной схеме использованы четырех разрядные сумматоры с последовательным переносом.
Время выполнения операции умножения определяется временем распространения переносов до выходного разряда .
Матричный умножитель
Если внимательно посмотреть на схему матричного умножителя (англ. binary multiplier), то можно увидеть, что она образует матрицу, сформированную проводниками, по которым передаются разряды числа
и числа . В точках пересечения этих проводников находятся логические элементы . Именно по этой причине умножители, реализованные по данной схеме, получили название матричных умножителей.Схемная сложность
Частичные произведения вычисляются за
шагов. Сложение с вычислением переносов включает шаг. Последнее сложение можно выполнить за .В итоге суммарное время работы:
Время работы схемы можно сократить, если сумматоры располагать не последовательно друг за другом, как это предполагается алгоритмом, приведенным на первом рисунке (общая схема), а суммировать частичные произведения попарно, затем суммировать пары частичных произведений и т.д. В этом случае время выполнения операции умножения значительно сократится.
Особенно заметен выигрыш в быстродействии при построении многоразрядных умножителей, однако ничего не бывает бесплатно. В обмен на быстродействие придётся заплатить увеличением разрядности сумматоров, а значит сложностью схемы.
Есть и более быстрые способы умножения двух чисел, например умножение с помощью дерева Уоллеса, которое работает .
См. также
Источники информации
- Кормен Т., Лейзерсон Ч., Ривест Р.. Алгоритмы: построение и анализ = Introduction to Algorithms / Пер. с англ. под ред. А. Шеня. — М.: МЦНМО, 2000. — 960 с. — ISBN 5-900916-37-5