NP-полнота игры Тетрис — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Initial commit)
 
м (rollbackEdits.php mass rollback)
 
(не показано 14 промежуточных версий 4 участников)
Строка 4: Строка 4:
 
: '''Игровое поле''' — расчерченный на клетки прямоугольник размером <tex>m</tex> горизонтальных рядов (строк) на <tex>n</tex> вертикальных (столбцов). Примем следующую индексацию: снизу вверх и слева направо. <math>\langle i, j \rangle</math>-я клетка либо ''свободна'', либо ''занята''. В допустимом состоянии поля ни один горизонтальный ряд не заполнен целиком и нет ни одной полностью пустой строки, которая бы лежала ниже занятой клетки. При оценке допустимости некоторых действий будем считать, что все клетки вне игрового поля всегда заняты и тем самым ограничивают поле.
 
: '''Игровое поле''' — расчерченный на клетки прямоугольник размером <tex>m</tex> горизонтальных рядов (строк) на <tex>n</tex> вертикальных (столбцов). Примем следующую индексацию: снизу вверх и слева направо. <math>\langle i, j \rangle</math>-я клетка либо ''свободна'', либо ''занята''. В допустимом состоянии поля ни один горизонтальный ряд не заполнен целиком и нет ни одной полностью пустой строки, которая бы лежала ниже занятой клетки. При оценке допустимости некоторых действий будем считать, что все клетки вне игрового поля всегда заняты и тем самым ограничивают поле.
  
//картинки//
+
{| cellpadding="3" style="margin-left: auto; margin-right: auto;"
 +
| [[Файл:SQ.png|50px|thumb|right| SQ]]
 +
| [[Файл:LG.png|50px|thumb|right| LG]]
 +
| [[Файл:RG.png|50px|thumb|right| RG]]
 +
| [[Файл:LS.png|50px|thumb|right| LS]]
 +
| [[Файл:RS.png|50px|thumb|right| RS]]
 +
| [[Файл:I.png|50px|thumb|right| I]]
 +
| [[Файл:T.png|50px|thumb|right| T]]
 +
|}
 +
 
 
: '''Игровые фигуры''' — семь различных фигур, получаемых соединением четырех единичных клеток по каким-либо из сторон. Каждая фигура имеет ''центр'' (на илл. 2). ''Состояние фигуры'' <math>P</math> — кортеж из четырех элементов, а именно:
 
: '''Игровые фигуры''' — семь различных фигур, получаемых соединением четырех единичных клеток по каким-либо из сторон. Каждая фигура имеет ''центр'' (на илл. 2). ''Состояние фигуры'' <math>P</math> — кортеж из четырех элементов, а именно:
# ''тип фигуры'' — SQ, LG, RG, LS, RS, I или T.
+
# ''тип фигуры'' — SQ (''square''), LG (''left gun''), RG (''right gun''), LS (''left snake''), RS (''right snake''), I или T.
 
# ''ориентация'' — поворот на 0°, 90°, 180° или 270° по часовой стрелке относительно ''базовой ориентации'' фигуры (на илл. 1).
 
# ''ориентация'' — поворот на 0°, 90°, 180° или 270° по часовой стрелке относительно ''базовой ориентации'' фигуры (на илл. 1).
# ''позиция'' центра фигуры на поле, выбираемая из  <tex>\{1,\dots,m\} \times \{1,\dots,n\}</tex>. Позицией SQ считается местоположение его левой верхней клетки, так как ее центр лежит на границе четырех клеток, а не внутри одной.
+
# ''позиция'' центра фигуры на поле, выбираемая из  <tex>\{1,\dots,m\} \times \{1,\dots,n\}</tex>. Позицией SQ считается местоположение ее левой верхней клетки, так как ее центр лежит на границе четырех клеток, а не внутри одной.
# значение ''зафиксирована'' или ''не зафиксирована'', определяющее, может ли фигура продолжать двигаться.  
+
# значение ''зафиксирована'' (англ. ''fixed'') или ''не зафиксирована'' (англ. ''unfixed''), определяющее, может ли фигура продолжать двигаться.  
 
В ''исходном'' состоянии фигуры она имеет базовую ориентацию, ее позиция такова, что верхний ряд ее клеток содержится в ряду <math>m</math>, а центр в столбце <math>\lfloor n/2 \rfloor</math>, и она не зафиксирована.
 
В ''исходном'' состоянии фигуры она имеет базовую ориентацию, ее позиция такова, что верхний ряд ее клеток содержится в ряду <math>m</math>, а центр в столбце <math>\lfloor n/2 \rfloor</math>, и она не зафиксирована.
  
: '''Поворот фигуры'''. ''Модель поворота'' — функция <math>R : \langle P,\theta,B \rangle \mapsto P'</math>, где <math>P</math> и <math>P'</math> — состояния фигуры, <math>\theta \in \{-90°,90°\}</math> — угол поворота, а <math>B</math> — игровое поле. На <math>R</math> налагаются следующие условия:
+
: '''Поворот фигуры'''. ''Модель поворота'' — функция <math>R : \langle P,\theta,B \rangle \mapsto P'</math>, где <math>P</math> и <math>P'</math> — состояния фигуры, <math>\theta \in \{-90^{\circ},90^{\circ}\}</math> — угол поворота, а <math>B</math> — игровое поле. На <math>R</math> налагаются следующие условия:
# Если <math>P = \langle t,o,\langle i,j \rangle,f\rangle</math> и поворот ''допустим'', то <math>P' = \langle t,(o + \theta) mod 360°,\langle i',j' \rangle,f\rangle</math> для некоторых <math>i'</math> и <math>j'</math>. Если поворот ''недопустим'', то <math>P' = P</math>.
+
# Если <math>P = \langle t,o,\langle i,j \rangle,f\rangle</math> и поворот ''допустим'', то <math>P' = \langle t,(o + \theta) \mod 360^{\circ},\langle i',j' \rangle,f\rangle</math> для некоторых <math>i'</math> и <math>j'</math>. Если поворот ''недопустим'', то <math>P' = P</math>.
 
# При определении допустимости поворота, <math>R</math> рассматривает ''окрестность'' констатного размера у фигуры <math>P</math> — то есть, только клетки на заданном расстоянии от позиции <math>P</math> влияют на <math>R</math>, а положение фигуры на игровом поле значения не имеет.
 
# При определении допустимости поворота, <math>R</math> рассматривает ''окрестность'' констатного размера у фигуры <math>P</math> — то есть, только клетки на заданном расстоянии от позиции <math>P</math> влияют на <math>R</math>, а положение фигуры на игровом поле значения не имеет.
 
# Если все клетки в окрестности <math>P</math> свободны, то поворот допустим.
 
# Если все клетки в окрестности <math>P</math> свободны, то поворот допустим.
 
# Если поворот допустим, то <math>P'</math> не занимает ни одной клетки, уже занятой в <math>B</math>.
 
# Если поворот допустим, то <math>P'</math> не занимает ни одной клетки, уже занятой в <math>B</math>.
 +
 +
: '''Игровые действия'''.
 +
Для фигуры <math>P=\langle t,o,\langle i,j \rangle , fixed \rangle.</math> допустимых действий нет. Для фигуры <math>P=\langle t,o,\langle i,j \rangle , unfixed \rangle.</math> на данном игровом поле <math>B</math> допустимы следующие действия:
 +
# ''Поворот по часовой стрелке''. Новым состоянием фигуры будет <math>R(P,90^{\circ},B)</math>.
 +
# ''Поворот против часовой стрелки''. Новым состоянием фигуры будет <math>R(P,-90^{\circ},B)</math>.
 +
# ''Сдвиг влево''. Если клетки слева от фигуры свободны в <math>B</math>, фигура <math>P</math> может быть сдвинута влево на один столбец. Новым состоянием фигуры будет <math>\langle t,o,\langle i,j - 1 \rangle , unfixed \rangle.</math>
 +
# ''Сдвиг вправо''. Аналогично сдвигу влево; новым состоянием будет <math>\langle t,o,\langle i,j + 1 \rangle , unfixed \rangle.</math>
 +
# ''Снижение'' на один ряд, если все клетки под фигурой свободны в <math>B</math>. Новое состояние — <math>\langle t,o,\langle i - 1,j \rangle , unfixed \rangle.</math>
 +
# ''Фиксация'', если хотя бы одна клетка под фигурой занята в <math>B</math>. Новое состояние — <math>\langle t,o,\langle i,j \rangle , fixed \rangle.</math>
 +
 +
''Траекторией'' <math>\sigma</math> фигуры <math>P</math> называется последовательность допустимых действий, начинающихся в исходном состоянии и заканчивающихся действием-фиксацией. Результатом траектории фигуры <math>P</math> на игровом поле <math>B</math> является новое поле <math>B'</math>, определяемое следующим образом:
 +
# Новое поле <math>B'</math> — это поле <math>B</math> с заполненными клетками фигуры <math>P</math>.
 +
# Если фигура зафиксирована таким образом, что для некоторого горизонтального ряда <math>r</math> каждая клетка <math>r</math> в поле <math>B'</math> заполнена, то ряд <math>r</math> ''освобождается''. Для всех <math>r' \geqslant r</math> следует заменить ряд <math>r'</math> в <math>B'</math> рядом <math>r'+1</math> в <math>B'</math>. Ряд <math>m</math> в <math>B'</math> становится пустым. Фиксация одной фигуры может привести к освобождению более чем одного ряда.
 +
# Если исходное состояние следующей фигуры в <math>B'</math> заблокировано, игра заканчивается (игрок ''проигрывает'').
 +
 +
Для ''игры'' <math>\langle B_0,P_1,\dots,P_p \rangle</math>, ''последовательностью траекторий'' <math>\Sigma</math> является такая последовательность <math> B_0,\sigma_1,B_1,\dots,\sigma_p,B_p</math>, что для любого <math>i</math> траектория фигуры <math>P_i</math> на поле <math>B_{i-1}</math> приводит к полю <math>B_i</math>. Однако, если существует действие <math>\sigma_q</math> при некотором <math>q \leqslant p</math>, приводящее к проигрышу, то последовательность <math>\Sigma</math> завершается на <math>B_q</math>, а не на <math>B_p</math>.
 +
 +
==NP-полнота игры==
 +
 +
Рассмотрим следующую проблему, называемую '''k-cleared rows''' (<math>G,\Sigma</math>): в игре <math>G</math>, приводит ли <math>\Sigma</math> к освобождению хотя бы <math>k</math> рядов до проигрыша? Вспомним проблему 3-Partition, которая является NP-полной. Формальное ее условие таково: ввод — последовательность целых чисел <math>a_1,a_2,\dots,a_{3s}</math> и неотрицательное число <math>T</math> такое, что <math>T/4 < a_i < T/2</math> для всех <math>1\leqslant i \leqslant 3s</math>, <tex>\sum_{i=1}^{3s} a_i = sT</tex>; вывод — можно ли <math>\{a_1,\dots,a_{3s}\}</math> разбить на <math>s</math> непересекающихся подмножеств <math>A_1,\dots,A_s</math> так, что для всех <math>1\leqslant j \leqslant s</math> выполняется <tex>\sum_{a_i \in A_j} a_i = T</tex>.
 +
 +
{{Теорема
 +
|statement=
 +
3-Partition сводится к k-cleared rows.
 +
|proof=
 +
 +
Опишем отображение из 3-Partition в k-cleared-rows. Для заданного ввода 3-Partition <math>P = \langle a_1,\dots,a_{3s},T \rangle</math>, составим игру <math>G(P)</math>, поле которой может быть полностью очищено, только если для <math>P</math> в задаче 3-Partition ответ положительный.
 +
[[Файл:board_partition.png|300px|thumb|right| Начальное игровое поле]]
 +
Начальное игровое поле содержит <math>s</math> ''контейнеров'', соответствующих множествам <math>A_1,\dots,A_s</math> в задаче 3-Partition. Последовательность фигур состоит из некоторого числа фигур, соответствующих каждому из <math>a_i</math> и подобранных так, что все фигуры для <math>a_i</math> должны быть помещены в один и тот же контейнер. Существует подходящее решение задачи 3-Partition для <math>\{a_1,\dots,a_{3s}\}</math> в том и только том случае, когда наборы фигур во всех контейнерах имеют одинаковую высоту. Последние три столбца в игровом поле представляют собой ''стопор'', который не дает очистить ряды, пока не подойдет к концу последовательность фигур; если все контейнеры заполнены на одинаковую высоту, то все поле может быть очищено с помощью последней (завершающей) части последовательности.
 +
Игра <math>G</math> состоит из следующих компонент:
 +
 +
: '''Начальное игровое поле.''' Поле имеет <math>6T + 22 + (3s + O(1))</math> строк и <math>6s + 3</math> столбцов. Каждое <math>a_i</math> будет представлено <math>a_i + 1</math> блоками размером <math>6 \times 6 </math>; так как сумма элементов <math>A_j = \{a_i,a_j,a_k\}</math> равна <math>T</math>, получаем <math>6(T+3)=6T+18</math>. В дополнение к этим <math>6T+18</math> рядам, внизу находятся четыре ряда, обеспечивающие корректное положение блокам.
 +
Верхние <math>3s+O(1)</math> рядов (<math>O(1)</math> — это размер окрестности в модели вращения) изначально пусты и представляют собой промежуточную зону, где фигуру можно вращать и двигать, прежде чем она попадет в нижние <math>6T+22</math> рядов. Остальная часть поля может быть логически разделена на <math>s+1</math> части, где первые <math>s</math> частей имеют шесть клеток в ширину, а последняя — три клетки в ширину. Первые <math>s</math> частей — это контейнеры, имеющие следующий вид:
 +
# В первом и втором столбцах пусты все клетки, кроме нижних четырех.
 +
# Третий столбец не имеет занятых клеток.
 +
# В четвертом и пятом столбцах пусты только клетки в тех строках, чей номер по модулю 6 равен 5.
 +
# Шестой столбец не имеет пустых клеток.
 +
 +
Последняя логическая часть — стопор шириной в три клетки:
 +
# В первом столбце заполнены все клетки, кроме двух верхних.
 +
# Во втором столбце заполнены все клетки, кроме верхней.
 +
# В третьей колонке пусты все клетки, кроме второй сверху.
 +
 +
: '''Фигуры.''' Последовательностью фигур для всей игры будет конкатенация последовательностей для каждого <math>a_i</math> и завершающей последовательности. Для каждого числа <math>a_1,\dots,a_{3s}</math> имеем следующие части:
 +
# ''Инициатор'' — последовательность <math>\langle I,LG,SQ \rangle</math>.
 +
# ''Наполнитель'' — последовательность <math>\langle LG,LS,LG,LG,SQ \rangle</math>, повторенная <math>a_i</math> раз.
 +
# ''Завершитель''— последовательность <math>\langle SQ,SQ \rangle</math>.
 +
Вышеописанные части подаются для <math>a_1,a_2,\dots</math> последовательно. После частей, соответствующих <math>a_{3s}</math>, идет завершающая последовательность:
 +
# <math>s</math> фигур <math>I</math> подряд.
 +
# одна фигура <math>RG</math>.
 +
# <math>3T/2 + 5</math> фигур <math>I</math> подряд.
 +
 +
//продолжение
 +
}}
 +
 +
== Источники информации ==
 +
* [http://arxiv.org/abs/cs/0210020 «Tetris is Hard, Even to Approximate» by Erik D. Demaine, Susan Hohenberger, David Liben-Nowell]
 +
 +
[[Категория:NP]]

Текущая версия на 19:42, 4 сентября 2022

Тетрис — популярная игра, созданная в середине 1980-х математиком Алексеем Пажитновым.

Формальные правила

Игровое поле — расчерченный на клетки прямоугольник размером [math]m[/math] горизонтальных рядов (строк) на [math]n[/math] вертикальных (столбцов). Примем следующую индексацию: снизу вверх и слева направо. [math]\langle i, j \rangle[/math]-я клетка либо свободна, либо занята. В допустимом состоянии поля ни один горизонтальный ряд не заполнен целиком и нет ни одной полностью пустой строки, которая бы лежала ниже занятой клетки. При оценке допустимости некоторых действий будем считать, что все клетки вне игрового поля всегда заняты и тем самым ограничивают поле.
SQ
LG
RG
LS
RS
I
T
Игровые фигуры — семь различных фигур, получаемых соединением четырех единичных клеток по каким-либо из сторон. Каждая фигура имеет центр (на илл. 2). Состояние фигуры [math]P[/math] — кортеж из четырех элементов, а именно:
  1. тип фигуры — SQ (square), LG (left gun), RG (right gun), LS (left snake), RS (right snake), I или T.
  2. ориентация — поворот на 0°, 90°, 180° или 270° по часовой стрелке относительно базовой ориентации фигуры (на илл. 1).
  3. позиция центра фигуры на поле, выбираемая из [math]\{1,\dots,m\} \times \{1,\dots,n\}[/math]. Позицией SQ считается местоположение ее левой верхней клетки, так как ее центр лежит на границе четырех клеток, а не внутри одной.
  4. значение зафиксирована (англ. fixed) или не зафиксирована (англ. unfixed), определяющее, может ли фигура продолжать двигаться.

В исходном состоянии фигуры она имеет базовую ориентацию, ее позиция такова, что верхний ряд ее клеток содержится в ряду [math]m[/math], а центр в столбце [math]\lfloor n/2 \rfloor[/math], и она не зафиксирована.

Поворот фигуры. Модель поворота — функция [math]R : \langle P,\theta,B \rangle \mapsto P'[/math], где [math]P[/math] и [math]P'[/math] — состояния фигуры, [math]\theta \in \{-90^{\circ},90^{\circ}\}[/math] — угол поворота, а [math]B[/math] — игровое поле. На [math]R[/math] налагаются следующие условия:
  1. Если [math]P = \langle t,o,\langle i,j \rangle,f\rangle[/math] и поворот допустим, то [math]P' = \langle t,(o + \theta) \mod 360^{\circ},\langle i',j' \rangle,f\rangle[/math] для некоторых [math]i'[/math] и [math]j'[/math]. Если поворот недопустим, то [math]P' = P[/math].
  2. При определении допустимости поворота, [math]R[/math] рассматривает окрестность констатного размера у фигуры [math]P[/math] — то есть, только клетки на заданном расстоянии от позиции [math]P[/math] влияют на [math]R[/math], а положение фигуры на игровом поле значения не имеет.
  3. Если все клетки в окрестности [math]P[/math] свободны, то поворот допустим.
  4. Если поворот допустим, то [math]P'[/math] не занимает ни одной клетки, уже занятой в [math]B[/math].
Игровые действия.

Для фигуры [math]P=\langle t,o,\langle i,j \rangle , fixed \rangle.[/math] допустимых действий нет. Для фигуры [math]P=\langle t,o,\langle i,j \rangle , unfixed \rangle.[/math] на данном игровом поле [math]B[/math] допустимы следующие действия:

  1. Поворот по часовой стрелке. Новым состоянием фигуры будет [math]R(P,90^{\circ},B)[/math].
  2. Поворот против часовой стрелки. Новым состоянием фигуры будет [math]R(P,-90^{\circ},B)[/math].
  3. Сдвиг влево. Если клетки слева от фигуры свободны в [math]B[/math], фигура [math]P[/math] может быть сдвинута влево на один столбец. Новым состоянием фигуры будет [math]\langle t,o,\langle i,j - 1 \rangle , unfixed \rangle.[/math]
  4. Сдвиг вправо. Аналогично сдвигу влево; новым состоянием будет [math]\langle t,o,\langle i,j + 1 \rangle , unfixed \rangle.[/math]
  5. Снижение на один ряд, если все клетки под фигурой свободны в [math]B[/math]. Новое состояние — [math]\langle t,o,\langle i - 1,j \rangle , unfixed \rangle.[/math]
  6. Фиксация, если хотя бы одна клетка под фигурой занята в [math]B[/math]. Новое состояние — [math]\langle t,o,\langle i,j \rangle , fixed \rangle.[/math]

Траекторией [math]\sigma[/math] фигуры [math]P[/math] называется последовательность допустимых действий, начинающихся в исходном состоянии и заканчивающихся действием-фиксацией. Результатом траектории фигуры [math]P[/math] на игровом поле [math]B[/math] является новое поле [math]B'[/math], определяемое следующим образом:

  1. Новое поле [math]B'[/math] — это поле [math]B[/math] с заполненными клетками фигуры [math]P[/math].
  2. Если фигура зафиксирована таким образом, что для некоторого горизонтального ряда [math]r[/math] каждая клетка [math]r[/math] в поле [math]B'[/math] заполнена, то ряд [math]r[/math] освобождается. Для всех [math]r' \geqslant r[/math] следует заменить ряд [math]r'[/math] в [math]B'[/math] рядом [math]r'+1[/math] в [math]B'[/math]. Ряд [math]m[/math] в [math]B'[/math] становится пустым. Фиксация одной фигуры может привести к освобождению более чем одного ряда.
  3. Если исходное состояние следующей фигуры в [math]B'[/math] заблокировано, игра заканчивается (игрок проигрывает).

Для игры [math]\langle B_0,P_1,\dots,P_p \rangle[/math], последовательностью траекторий [math]\Sigma[/math] является такая последовательность [math] B_0,\sigma_1,B_1,\dots,\sigma_p,B_p[/math], что для любого [math]i[/math] траектория фигуры [math]P_i[/math] на поле [math]B_{i-1}[/math] приводит к полю [math]B_i[/math]. Однако, если существует действие [math]\sigma_q[/math] при некотором [math]q \leqslant p[/math], приводящее к проигрышу, то последовательность [math]\Sigma[/math] завершается на [math]B_q[/math], а не на [math]B_p[/math].

NP-полнота игры

Рассмотрим следующую проблему, называемую k-cleared rows ([math]G,\Sigma[/math]): в игре [math]G[/math], приводит ли [math]\Sigma[/math] к освобождению хотя бы [math]k[/math] рядов до проигрыша? Вспомним проблему 3-Partition, которая является NP-полной. Формальное ее условие таково: ввод — последовательность целых чисел [math]a_1,a_2,\dots,a_{3s}[/math] и неотрицательное число [math]T[/math] такое, что [math]T/4 \lt a_i \lt T/2[/math] для всех [math]1\leqslant i \leqslant 3s[/math], [math]\sum_{i=1}^{3s} a_i = sT[/math]; вывод — можно ли [math]\{a_1,\dots,a_{3s}\}[/math] разбить на [math]s[/math] непересекающихся подмножеств [math]A_1,\dots,A_s[/math] так, что для всех [math]1\leqslant j \leqslant s[/math] выполняется [math]\sum_{a_i \in A_j} a_i = T[/math].

Теорема:
3-Partition сводится к k-cleared rows.
Доказательство:
[math]\triangleright[/math]

Опишем отображение из 3-Partition в k-cleared-rows. Для заданного ввода 3-Partition [math]P = \langle a_1,\dots,a_{3s},T \rangle[/math], составим игру [math]G(P)[/math], поле которой может быть полностью очищено, только если для [math]P[/math] в задаче 3-Partition ответ положительный.

Начальное игровое поле

Начальное игровое поле содержит [math]s[/math] контейнеров, соответствующих множествам [math]A_1,\dots,A_s[/math] в задаче 3-Partition. Последовательность фигур состоит из некоторого числа фигур, соответствующих каждому из [math]a_i[/math] и подобранных так, что все фигуры для [math]a_i[/math] должны быть помещены в один и тот же контейнер. Существует подходящее решение задачи 3-Partition для [math]\{a_1,\dots,a_{3s}\}[/math] в том и только том случае, когда наборы фигур во всех контейнерах имеют одинаковую высоту. Последние три столбца в игровом поле представляют собой стопор, который не дает очистить ряды, пока не подойдет к концу последовательность фигур; если все контейнеры заполнены на одинаковую высоту, то все поле может быть очищено с помощью последней (завершающей) части последовательности. Игра [math]G[/math] состоит из следующих компонент:

Начальное игровое поле. Поле имеет [math]6T + 22 + (3s + O(1))[/math] строк и [math]6s + 3[/math] столбцов. Каждое [math]a_i[/math] будет представлено [math]a_i + 1[/math] блоками размером [math]6 \times 6 [/math]; так как сумма элементов [math]A_j = \{a_i,a_j,a_k\}[/math] равна [math]T[/math], получаем [math]6(T+3)=6T+18[/math]. В дополнение к этим [math]6T+18[/math] рядам, внизу находятся четыре ряда, обеспечивающие корректное положение блокам.

Верхние [math]3s+O(1)[/math] рядов ([math]O(1)[/math] — это размер окрестности в модели вращения) изначально пусты и представляют собой промежуточную зону, где фигуру можно вращать и двигать, прежде чем она попадет в нижние [math]6T+22[/math] рядов. Остальная часть поля может быть логически разделена на [math]s+1[/math] части, где первые [math]s[/math] частей имеют шесть клеток в ширину, а последняя — три клетки в ширину. Первые [math]s[/math] частей — это контейнеры, имеющие следующий вид:

  1. В первом и втором столбцах пусты все клетки, кроме нижних четырех.
  2. Третий столбец не имеет занятых клеток.
  3. В четвертом и пятом столбцах пусты только клетки в тех строках, чей номер по модулю 6 равен 5.
  4. Шестой столбец не имеет пустых клеток.

Последняя логическая часть — стопор шириной в три клетки:

  1. В первом столбце заполнены все клетки, кроме двух верхних.
  2. Во втором столбце заполнены все клетки, кроме верхней.
  3. В третьей колонке пусты все клетки, кроме второй сверху.
Фигуры. Последовательностью фигур для всей игры будет конкатенация последовательностей для каждого [math]a_i[/math] и завершающей последовательности. Для каждого числа [math]a_1,\dots,a_{3s}[/math] имеем следующие части:
  1. Инициатор — последовательность [math]\langle I,LG,SQ \rangle[/math].
  2. Наполнитель — последовательность [math]\langle LG,LS,LG,LG,SQ \rangle[/math], повторенная [math]a_i[/math] раз.
  3. Завершитель— последовательность [math]\langle SQ,SQ \rangle[/math].

Вышеописанные части подаются для [math]a_1,a_2,\dots[/math] последовательно. После частей, соответствующих [math]a_{3s}[/math], идет завершающая последовательность:

  1. [math]s[/math] фигур [math]I[/math] подряд.
  2. одна фигура [math]RG[/math].
  3. [math]3T/2 + 5[/math] фигур [math]I[/math] подряд.
//продолжение
[math]\triangleleft[/math]

Источники информации