Формула Эйлера — различия между версиями
(→Двумерный случай) |
м (rollbackEdits.php mass rollback) |
| (не показана 1 промежуточная версия 1 участника) | |
(нет различий)
| |
Текущая версия на 19:39, 4 сентября 2022
Двумерный случай
| Теорема (формула Эйлера): |
| Доказательство: |
|
Воспользуемся методом математической индукции по количеству граней графа.
|
| Теорема (следствие из формулы Эйлера): |
Пусть связный планарный обыкновенный граф с вершинами (), ребрами и гранями. Тогда |
| Доказательство: |
| Поскольку не содержит петель и кратных ребер, то каждая грань граничит хотя бы с тремя ребрами. Пусть, двигаясь вдоль -й грани мы пройдем ребер. Очевидно, что . Поскольку , получаем . Из формулы Эйлера , то есть . |
Трехмерный случай
Покажем, что в трехмерном случае так же имеет место формула Эйлера.
| Теорема (формула Эйлера для многогранников): |
Для любого выпуклого многогранника имеет место равенство , где — число вершин, — число ребер и — число граней данного многогранника. |
| Доказательство: |
|
Для доказательства соотношения Эйлера представим поверхность выпуклого многогранника сделанной из эластичного материала. Удалим (вырежем) одну из его граней и оставшуюся поверхность растянем на плоскости. Получим планарный граф, содержащий внутренних граней, вершин и ребер. Тогда справедливо уже доказанное соотношение: . Подставляем и получаем . |
| Теорема (следствие из формулы Эйлера для многогранников): |
В любом выпуклом многограннике имеется или треугольная грань, или трехгранный угол. Более того, число треугольных граней плюс число трехгранных углов больше или равно восьми. |
| Доказательство: |
|
Обозначим через число вершин выпуклого многогранника, в которых сходится ребер. Тогда для общего числа вершин имеет место равенство Аналогично, обозначим через число граней выпуклого многогранника, у которых имеется ребер. Тогда для общего числа граней имеет место равенство Посчитаем число ребер многогранника. Имеем: , . По теореме Эйлера выполняется равенство . Подставляя вместо , и их выражения, получим: . Следовательно, , значит, число треугольных граней плюс число трехгранных углов больше или равно восьми. |
Источники информации
- Асанов М,, Баранский В., Расин В. — Дискретная математика — Графы, матроиды, алгоритмы (стр. 104-107)
- О.Оре — Графы и их применение (стр. 131-135)
- Википедия — Теорема Эйлера для многоугольников
- Выпуклые многогранники
