Список заданий по ДМ 2к 2016 осень — различия между версиями
(Новая страница: «<wikitex> # Доказать, что если в ориентированном графе существует цикл, то в нем существует и ...») |
м (rollbackEdits.php mass rollback) |
||
(не показано 15 промежуточных версий 8 участников) | |||
Строка 14: | Строка 14: | ||
# Харари 2.20 | # Харари 2.20 | ||
# Харари 2.22 | # Харари 2.22 | ||
+ | # Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения. | ||
+ | # Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост. | ||
+ | # Какое максимальное число точек сочленения может быть в графе с $n$ вершинами? | ||
+ | # При каких соотношениях $a$, $b$, $n$, $m$, $k$ существует граф с $a$ точками сочленения, $b$ мостами, $n$ вершинами, $m$ рёбрами, $k$ компонентами связности? | ||
+ | # Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это рефлексивно-транзитивное замыкание $R$. | ||
+ | # Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой. | ||
+ | # Харари 4.2 | ||
+ | # Харари 4.3 | ||
+ | # Харари 2.29 | ||
+ | # Харари 2.31 | ||
+ | # Харари 2.32 | ||
+ | # Харари 2.33 | ||
+ | # Харари 2.35 | ||
+ | # Харари 2.36 | ||
+ | # Харари 7.2 | ||
+ | # Харари 7.4 | ||
+ | # Харари 7.5 | ||
+ | # Харари 7.7 | ||
+ | # Харари 7.9 | ||
+ | # Харари 7.14 | ||
+ | # Харари 7.17 | ||
+ | # Харари 7.18 | ||
+ | # Харари 3.2 | ||
+ | # Наименьшее число вершин в кубическом графе, имеющем мост, равно 10. (Харари 3.3) | ||
+ | # Харари 3.4 | ||
+ | # Харари 3.5 | ||
+ | # Харари 3.6 | ||
+ | # Харари 3.7 | ||
+ | # Харари 3.9 | ||
+ | # Посчитать хроматический многочлен цикла $C_n$ | ||
+ | # Посчитать хроматический многочлен колеса $C_n + K_1$. | ||
+ | # Посчитать полного двудольного графа $K_{n,m}$. | ||
+ | # Харари 12.2 | ||
+ | # Харари 12.3 | ||
+ | # Харари 12.4 | ||
+ | # Харари 12.5 | ||
+ | # Харари 12.6 | ||
+ | # Харари 12.12 | ||
+ | # Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств. | ||
+ | # Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер. | ||
+ | # Харари 11.1 | ||
+ | # Харари 11.2 | ||
+ | # Харари 11.3 | ||
+ | # Харари 11.7 | ||
+ | # Харари 11.8 | ||
+ | # Харари 11.9 | ||
+ | # Харари 11.10 | ||
+ | # Харари 11.14 | ||
+ | # Харари 11.15 | ||
+ | # Харари 11.25 | ||
+ | # Харари 9.1 | ||
+ | # Харари 9.3 | ||
+ | # Харари 9.4 | ||
+ | # Харари 9.5 | ||
+ | # Харари 9.8 | ||
+ | # Харари 9.9 | ||
+ | # Харари 9.13 | ||
+ | # Харари 8.1 | ||
+ | # Харари 8.2 | ||
+ | # Харари 8.3 | ||
+ | # Харари 8.8 | ||
+ | # Харари 8.9 | ||
+ | # Харари 8.10 | ||
+ | # Харари 8.11 | ||
+ | # Матроид с выкинутым элементом. Пусть $M$ - матроид. Обозначим как $M\setminus x$ матроид, где из носителя выкинут элемент $x$. Множества, не содержавшие $x$, остаются независимыми. Формально, если $M = \langle X, I\rangle$, то $M\setminus x = \langle X \setminus x, \{A | A \in I, x \not\in A\}\rangle$. Докажите, что для любых $M$ и $x$ получившаяся конструкция $M\setminus x$ является матроидом. | ||
+ | # Матроид, стянутый по элементу. Пусть $M$ - матроид. Обозначим как $M/x$ матроид, где из носителя выкинут элемент $x$. Независимыми объявляются множества, которые ранее содержали $x$, после удаления из них этого элемента. Формально, если $M = \langle X, I\rangle$, то $M/x = \langle X \setminus x, \{A \setminus x | A \in I, x \in A\}\rangle$. Докажите, что для любых $M$ и $x$, таких что $\{x\}\in I$ получившаяся конструкция $M/x$ является матроидом. | ||
+ | # Прямая сумма матроидов. Пусть $M_1 = \langle X_1, I_1\rangle$ и $M_2=\langle X_2, I_2\rangle$ - матроиды с непересекающимися носителями ($X_1 \cap X_2 = \varnothing$). Обозначим как $M_1+M_2$ следующую конструкцию: $M_1 + M_2 = \langle X_1 \cup X_2, I = \{A \cup B|A \in I_1, B \in I_2\}$. Докажите, что сумма матроидов является матроидом. | ||
+ | # Разноцветные множества. Пусть $X$ - множество элементов, каждый из которых раскрашен в некоторый цвет. Будем называть независимыми множества, в которых все элементы разного цвета. Докажите, что эта конструкция является матроидом. Используйте определение матроида. | ||
+ | # Представьте конструкцию из предыдущего примера в виде прямой суммы универсальных матроидов. | ||
+ | # Является ли алгоритм Прима вариантом алгоритма Радо-Эдмондса? | ||
+ | # Является ли венгерский алгоритм вариантом алгоритма Радо-Эдмондса? | ||
+ | # Образуют ли паросочетания в полном графе семейство независимых множеств некоторого матроида? | ||
+ | # Рассмотрим кратчайшие пути из $s$ в $t$ в неориентированном невзвешенном графе. Назовем множество ребер независимым, если оно лежит на некотором кратчайшем пути. Образует ли эта конструкция семейство независимых множеств некоторого матроида? | ||
+ | # Верно ли, что в графовом матроиде любая база пересекается с любым циклом? | ||
+ | # Верно ли, что в матричном матроиде любая база пересекается с любым циклом? | ||
+ | # Верно ли, что в любом матроиде любая база пересекается с любым циклом? | ||
+ | # Обратная аксиома баз. Докажите, что если $B_1$ и $B_2$ - базы матроида, то для любого $y \in B_2 \setminus B_1$ найдется $x \in B_1 \setminus B_2$, такой что $B_1 \setminus x \cup y$ тоже база. | ||
+ | # Двойственный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M^*$ следующую констркуцию: $M^* = \langle X, \{A | \exists B $ - база $M, A \cap B = \varnothing\}\rangle$. Докажите, что $M^*$ является матроидом. | ||
+ | # Циклы двойственного матроида называются коциклами. Докажите, что любая база пересекается с любым коциклом? | ||
+ | # Урезанный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M|_k$ следующую констркуцию: $M|_k = \langle X, \{A | A \in I, |A| \le k \}\rangle$. Докажите, что $M|_k$ является матроидом. | ||
+ | # Будем называть предматроидом пару $\langle X, I \rangle$, для которой выполнены аксимомы нетривиальности ($\varnothing \in I$) и наследования независимости ($A \subset B$, $B \in I$, тогда $A \in I$). Пусть в предматроиде для любой весовой функции верно работает жадный алгоритм Радо-Эдмондса. Докажите, что такой предматроид является матроидом. | ||
+ | # Пусть $M$ - предматроид. Как и в матроиде будем называть базой множества максимальное подмножество из $I$. Докажите, что если для каждого множества $A$ все его базы равномощны, то $M$ - матроид. | ||
+ | # Будем называть два элемента $x$ и $y$ матроида параллельными, если пара $\{x, y\}$ образует цикл. Докажите, что если $A$ независимо $x \in A$, а $x$ и $y$ параллельны, то $A\setminus x\cup y$ также независимо. | ||
+ | # Рассмотрим носитель некоторого матроида, упорядочим произвольным образом его элементы: $X = \{x_1, x_2, \ldots, x_n\}$. Пусть $Y = \left\{x_k \,|\, rank(\{x_1, \ldots, x_{k-1}, x_k\}) > rank(\{x_1, \ldots, x_{k-1}\})\right\}$. Докажите, что $Y$ независимо. | ||
+ | # Какие универсальные матроиды являются матричными? | ||
+ | # Докажите, что матроид Вамоса не является представимым ни над каким полем. | ||
+ | # Докажите, что двойственный к матричному матроид является матричным. Как устроена его матрица? | ||
+ | # Когда двойственный к графовому матроид является графовым? | ||
+ | # Задан многочлен $A(x) = \sum\limits_{i=0}^n a_i x^i$ степени $n$ и число $x_0$. Найдите представление $A(x)$ в виде $A(x) = q(x) \cdot (x - x_0) + r$, где $r$~--- число, а $q(x)$~--- многочлен степени $n-1$ за время $O(n)$. | ||
+ | # Предложите способ восстановления коэффициентов многочлена $A(x) = \sum\limits_{i=0}^n a_i x^i$ по заданным $n+1$ парам $\{(x_0, y_0), (x_1, y_1), \ldots (x_n, y_n)\}$, где $y_i = A(x_i)$ и все $x_i$ различны, за $O(n^2)$. | ||
+ | # Пусть заданы значения многочлена $A(x)$ степени $n$ для всех $x = 0, 1, \ldots, n$. Для заданного числа $t > n$ посчитайте $A(t)$ за $O(n)$. | ||
+ | # Докажите, что $DFT(DFT(\langle a_0, a_1, \ldots, a_{n-1} \rangle)) = n \cdot \langle a_0, a_{n-1}, a_{n-2}, \ldots, a_1 \rangle$ | ||
+ | # Опишите модификацию алгоритма FFT для случая, когда размер массива является степенью тройки ($n = 3^k$). Какое будет рекуррентное соотношение для времени работы и само время работы в таком случае? Указание: как разделить на 3 многочлена и как скомпоновать результаты? | ||
+ | # Как за один вызов алгоритма FFT посчитать преобразование Фурье 2 многочленов $A$ и $B$ с вещественными коэффициентами? Указание: нужно объединить 2 многочлена степени $n$ в один многочлен $C$ степени $n$ с комплексными коэффициентами и восстановить $DFT(A)$ и $DFT(B)$ по $DFT(C)$. | ||
+ | # Для заданных $n$ различных чисел $x_0, x_1, \ldots, x_{n-1}$ постройте многочлен $n$-й степени, который имеет корни только в заданных $n$ точках за $O(n \log^2 n)$ | ||
+ | # Пусть мы хотим считать преобразование Фурье не в поле комплексных чисел, а в поле остатков по модулю $p$, где $p$~--- простое число. Для каких $p$ такое преобразование можно сделать, как найти соответствующий корень $n$-й степени из единицы $\omega_n$, и как изменится сам алгоритм? | ||
+ | # Даны 2 числа в десятичной системе счисления, каждое состоит из $n$ десятичных цифр. Найдите их произведение за $O(n \log n)$. | ||
+ | # Даны две строки $p$ и $t$ из символов 0 и 1 ($|p| \le |t|$). Найдите расстояние Хэмминга между $p$ и всеми подстроками $t[i..i+|p|-1]$ длины $|p|$ за $O(n \log n)$. | ||
+ | # Задан многочлен $A(x) = \sum\limits_{i=0}^{n - 1} a_i x^i, a_0 \neq 0$. Найдите такой многочлен $B(x)$, что $A(x) \times B(x) = 1 + x^n Q(x)$ для какого-то многочлена $Q(x)$ за $O(n \log^2 n)$. | ||
+ | # То же самое за $O(n \log n)$. | ||
+ | # Каков критерий существования решения и алгоритм восстановления числа в КТО, если убрать требование взаимной простоты модулей $m_1$ и $m_2$? | ||
+ | # Чему равна сумма всех чисел от 0 до $n-1$, взаимнопростых с $n$? | ||
+ | # Найдите $\frac{n!}{p^k} \mod p$, где $k$ - максимальная степень вхождения простого $p$ в $n!$, за $O(p \log n)$ | ||
+ | # Докажите, что $gcd$ последовательных чисел Фибоначчи равен 1. | ||
+ | # Докажите, что $gcd(F_n, F_m) = F_{gcd(n, m)}$. | ||
+ | # Для заданных $a$ и нечетного простого $p$, проверьте, что существует $x$: $x^2 \equiv a \mod p$ за $O(\log p)$ | ||
+ | # Решите задачу дискретного логарифма для простого модуля $p$ вида $2^k + 1$ за $O(\mathop{poly}(k))$. | ||
+ | # Докажите лемму о паросочетании в графе замен (формулировка тут: [http://neerc.ifmo.ru/wiki/index.php?title=%D0%9B%D0%B5%D0%BC%D0%BC%D0%B0_%D0%BE_%D0%BF%D0%B0%D1%80%D0%BE%D1%81%D0%BE%D1%87%D0%B5%D1%82%D0%B0%D0%BD%D0%B8%D0%B8_%D0%B2_%D0%B3%D1%80%D0%B0%D1%84%D0%B5_%D0%B7%D0%B0%D0%BC%D0%B5%D0%BD], доказательство неправильное - неверный индукционный переход) | ||
+ | # Рассмотрим два матроида $M_1$ и $M_2$. Как связаны максимальное независимое множество пересечения $M_1 \cap M_2$ и база $M_1 \cup M_2^*$? ($M_2^*$ - матроид, двойственный $M_2$) | ||
+ | # Докажите теорему Радо: пусть $M$ - матроид с ранговой функцией $r$, $X = X_1 \cup X_2 \cup ...\cup X_k$, причем все $X_i$ попарно не пересекаются. Будем называть независимой системой представителей независимое множество $A$, такое что $|A \cap X_i| \le 1$. Пусть $A_{max}$ - максимальная по мощности независимая система представителей. Тогда $|A_{max}|=\min_{Z\subset \{1,..,k\}}(r(\cup_{i\in Z} X_i)+k-|Z|)$. | ||
+ | # Предложите алгоритм построения максимальной независимой системы представителей. | ||
+ | # Докажите, что длина кратчайшего пути из $S$ в $T$ в алгоритме построения базы пересечения матроидов не убывает. | ||
+ | # Докажите, что число различных длин кратчайшего пути из $S$ в $T$, которые встречаются в алгоритме построения базы пересечения матроидов, есть $O(\sqrt n)$. | ||
+ | # Докажите, что сумма длин кратчайших пути из $S$ в $T$, которые встречаются в алгоритме построения базы пересечения матроидов, есть $O(n \log n)$. | ||
+ | # Игра Шеннона. Рассмотрим игру на связном графе с множеством ребер $E$. Играют два игрока, cut и link, первым ходит cut. Игроки по очереди добавляют себе ребра, не использованные на предыдущих ходах. В конце игры link выигрывает, если по его ребрам можно дойти от любой вершины до любой. Докажите, что link выигрывает при оптимальной игре, если и только если в графе существует два непересекающихся остовных дерева. | ||
+ | # Игра Шеннона на произвольном матроиде. Рассмотрим игру на матроиде $M$. Играют два игрока, cut и link, первым ходит cut. Игроки по очереди выбирают себе элементы носителя, не использованные на предыдущих ходах. В конце игры link выигрывает, если его множество содержит базу матроида. Докажите, что link выигрывает при оптимальной игре, если и только если в графе существует две непересекающихся базы. | ||
+ | # Пусть $M$ - невырожденная квадратная матрица над вещественными числами. Докажите, что для любого множества строк $R$ найдется множество столбцов той же мощности $C$, что миноры $R\times C$ и $\overline{R}\times \overline{C}$ - ненулевые (как $\overline T$ обозначено множество строк/столбцов, не входящих в $T$). | ||
+ | # Задан двудольный граф, каждая вершина имеет вес. Требуется выбрать паросочетание, чтобы суммарный вес покрытых вершин был максимален. Решите эту задачу, не используя сведение к обычной задаче о назначениях. | ||
</wikitex> | </wikitex> |
Текущая версия на 19:27, 4 сентября 2022
<wikitex>
- Доказать, что если в ориентированном графе существует цикл, то в нем существует и простой цикл.
- Доказать, что если в неориентированным графе существует цикл, то в нем существует и простой цикл.
- Будем называть согласованным циклом в графе класс эквивалентности циклических путей относительно циклического сдвига. При этом циклический путь не должен проходить два раза по одному ребру в разных направлениях. Докажите, что в графе есть согласованный цикл тогда и только тогда когда там есть цикл.
- Петя придумал отношение средней связности: $u$ средне связана с $v$, если из $u$ достижима $v$ или из $v$ достижима $u$. Является ли это отношение отношением эквивалентности?
- Пусть граф $G$ - объединение двух различных простых путей из $u$ в $v$. Докажите, что в $G$ есть цикл.
- Харари 2.3
- Харари 2.5
- Харари 2.9
- Харари 2.13
- Харари 2.15
- Будем говорить, что $G$ связан короткими путями, если между любыми двумя вершинами в $G$ есть путь длины не более 3. Докажите, что либо $G$, либо $\overline G$ связан короткими путями.
- Харари 2.16
- Харари 2.20
- Харари 2.22
- Доказать или опровергнуть, что если ребро $uv$ - мост, то $u$ и $v$ - точки сочленения.
- Доказать или опровергнуть, что если $u$ и $v$ - точки сочленения, то $uv$ - мост.
- Какое максимальное число точек сочленения может быть в графе с $n$ вершинами?
- При каких соотношениях $a$, $b$, $n$, $m$, $k$ существует граф с $a$ точками сочленения, $b$ мостами, $n$ вершинами, $m$ рёбрами, $k$ компонентами связности?
- Рассмотрим отношение на рёбрах - $R$. $ab R cd$, если 1) $ab$ и $cd$ имеют общую вершину; 2) $ab$ и $cd$ лежат на цикле. Доказать, что вершинная двусвязность - это рефлексивно-транзитивное замыкание $R$.
- Доказать, что ребро $uv$ - мост тогда и только тогда, когда $uv$ вершинно двусвязно только с самим собой.
- Харари 4.2
- Харари 4.3
- Харари 2.29
- Харари 2.31
- Харари 2.32
- Харари 2.33
- Харари 2.35
- Харари 2.36
- Харари 7.2
- Харари 7.4
- Харари 7.5
- Харари 7.7
- Харари 7.9
- Харари 7.14
- Харари 7.17
- Харари 7.18
- Харари 3.2
- Наименьшее число вершин в кубическом графе, имеющем мост, равно 10. (Харари 3.3)
- Харари 3.4
- Харари 3.5
- Харари 3.6
- Харари 3.7
- Харари 3.9
- Посчитать хроматический многочлен цикла $C_n$
- Посчитать хроматический многочлен колеса $C_n + K_1$.
- Посчитать полного двудольного графа $K_{n,m}$.
- Харари 12.2
- Харари 12.3
- Харари 12.4
- Харари 12.5
- Харари 12.6
- Харари 12.12
- Доказать формулу Зыкова для хроматического многочлена графа $G$: $P_G(x)=\sum\limits_{i=1}^n pt(G,i)x^{\underline{i}}$, где $pt(G,i)$ — число способов разбить вершины $G$ на $i$ независимых множеств.
- Доказать формулу Уитни: пусть $G$ - обыкновенный $(n, m)$ - граф. Тогда коэффициент при $x^i$, где $1\le i\le n$ в хроматическом многочлене $P_G(x)$ равен $\sum \limits_{j=0}^{m}{(-1)^jN(i, j)}$, где $N(i, j)$ - число остовных подграфов графа $G$, имеющих $i$ компонент связности и $j$ рёбер.
- Харари 11.1
- Харари 11.2
- Харари 11.3
- Харари 11.7
- Харари 11.8
- Харари 11.9
- Харари 11.10
- Харари 11.14
- Харари 11.15
- Харари 11.25
- Харари 9.1
- Харари 9.3
- Харари 9.4
- Харари 9.5
- Харари 9.8
- Харари 9.9
- Харари 9.13
- Харари 8.1
- Харари 8.2
- Харари 8.3
- Харари 8.8
- Харари 8.9
- Харари 8.10
- Харари 8.11
- Матроид с выкинутым элементом. Пусть $M$ - матроид. Обозначим как $M\setminus x$ матроид, где из носителя выкинут элемент $x$. Множества, не содержавшие $x$, остаются независимыми. Формально, если $M = \langle X, I\rangle$, то $M\setminus x = \langle X \setminus x, \{A | A \in I, x \not\in A\}\rangle$. Докажите, что для любых $M$ и $x$ получившаяся конструкция $M\setminus x$ является матроидом.
- Матроид, стянутый по элементу. Пусть $M$ - матроид. Обозначим как $M/x$ матроид, где из носителя выкинут элемент $x$. Независимыми объявляются множества, которые ранее содержали $x$, после удаления из них этого элемента. Формально, если $M = \langle X, I\rangle$, то $M/x = \langle X \setminus x, \{A \setminus x | A \in I, x \in A\}\rangle$. Докажите, что для любых $M$ и $x$, таких что $\{x\}\in I$ получившаяся конструкция $M/x$ является матроидом.
- Прямая сумма матроидов. Пусть $M_1 = \langle X_1, I_1\rangle$ и $M_2=\langle X_2, I_2\rangle$ - матроиды с непересекающимися носителями ($X_1 \cap X_2 = \varnothing$). Обозначим как $M_1+M_2$ следующую конструкцию: $M_1 + M_2 = \langle X_1 \cup X_2, I = \{A \cup B|A \in I_1, B \in I_2\}$. Докажите, что сумма матроидов является матроидом.
- Разноцветные множества. Пусть $X$ - множество элементов, каждый из которых раскрашен в некоторый цвет. Будем называть независимыми множества, в которых все элементы разного цвета. Докажите, что эта конструкция является матроидом. Используйте определение матроида.
- Представьте конструкцию из предыдущего примера в виде прямой суммы универсальных матроидов.
- Является ли алгоритм Прима вариантом алгоритма Радо-Эдмондса?
- Является ли венгерский алгоритм вариантом алгоритма Радо-Эдмондса?
- Образуют ли паросочетания в полном графе семейство независимых множеств некоторого матроида?
- Рассмотрим кратчайшие пути из $s$ в $t$ в неориентированном невзвешенном графе. Назовем множество ребер независимым, если оно лежит на некотором кратчайшем пути. Образует ли эта конструкция семейство независимых множеств некоторого матроида?
- Верно ли, что в графовом матроиде любая база пересекается с любым циклом?
- Верно ли, что в матричном матроиде любая база пересекается с любым циклом?
- Верно ли, что в любом матроиде любая база пересекается с любым циклом?
- Обратная аксиома баз. Докажите, что если $B_1$ и $B_2$ - базы матроида, то для любого $y \in B_2 \setminus B_1$ найдется $x \in B_1 \setminus B_2$, такой что $B_1 \setminus x \cup y$ тоже база.
- Двойственный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M^*$ следующую констркуцию: $M^* = \langle X, \{A | \exists B $ - база $M, A \cap B = \varnothing\}\rangle$. Докажите, что $M^*$ является матроидом.
- Циклы двойственного матроида называются коциклами. Докажите, что любая база пересекается с любым коциклом?
- Урезанный матроид. Пусть $M = \langle X, I \rangle$ - матроид. Обозначим как $M|_k$ следующую констркуцию: $M|_k = \langle X, \{A | A \in I, |A| \le k \}\rangle$. Докажите, что $M|_k$ является матроидом.
- Будем называть предматроидом пару $\langle X, I \rangle$, для которой выполнены аксимомы нетривиальности ($\varnothing \in I$) и наследования независимости ($A \subset B$, $B \in I$, тогда $A \in I$). Пусть в предматроиде для любой весовой функции верно работает жадный алгоритм Радо-Эдмондса. Докажите, что такой предматроид является матроидом.
- Пусть $M$ - предматроид. Как и в матроиде будем называть базой множества максимальное подмножество из $I$. Докажите, что если для каждого множества $A$ все его базы равномощны, то $M$ - матроид.
- Будем называть два элемента $x$ и $y$ матроида параллельными, если пара $\{x, y\}$ образует цикл. Докажите, что если $A$ независимо $x \in A$, а $x$ и $y$ параллельны, то $A\setminus x\cup y$ также независимо.
- Рассмотрим носитель некоторого матроида, упорядочим произвольным образом его элементы: $X = \{x_1, x_2, \ldots, x_n\}$. Пусть $Y = \left\{x_k \,|\, rank(\{x_1, \ldots, x_{k-1}, x_k\}) > rank(\{x_1, \ldots, x_{k-1}\})\right\}$. Докажите, что $Y$ независимо.
- Какие универсальные матроиды являются матричными?
- Докажите, что матроид Вамоса не является представимым ни над каким полем.
- Докажите, что двойственный к матричному матроид является матричным. Как устроена его матрица?
- Когда двойственный к графовому матроид является графовым?
- Задан многочлен $A(x) = \sum\limits_{i=0}^n a_i x^i$ степени $n$ и число $x_0$. Найдите представление $A(x)$ в виде $A(x) = q(x) \cdot (x - x_0) + r$, где $r$~--- число, а $q(x)$~--- многочлен степени $n-1$ за время $O(n)$.
- Предложите способ восстановления коэффициентов многочлена $A(x) = \sum\limits_{i=0}^n a_i x^i$ по заданным $n+1$ парам $\{(x_0, y_0), (x_1, y_1), \ldots (x_n, y_n)\}$, где $y_i = A(x_i)$ и все $x_i$ различны, за $O(n^2)$.
- Пусть заданы значения многочлена $A(x)$ степени $n$ для всех $x = 0, 1, \ldots, n$. Для заданного числа $t > n$ посчитайте $A(t)$ за $O(n)$.
- Докажите, что $DFT(DFT(\langle a_0, a_1, \ldots, a_{n-1} \rangle)) = n \cdot \langle a_0, a_{n-1}, a_{n-2}, \ldots, a_1 \rangle$
- Опишите модификацию алгоритма FFT для случая, когда размер массива является степенью тройки ($n = 3^k$). Какое будет рекуррентное соотношение для времени работы и само время работы в таком случае? Указание: как разделить на 3 многочлена и как скомпоновать результаты?
- Как за один вызов алгоритма FFT посчитать преобразование Фурье 2 многочленов $A$ и $B$ с вещественными коэффициентами? Указание: нужно объединить 2 многочлена степени $n$ в один многочлен $C$ степени $n$ с комплексными коэффициентами и восстановить $DFT(A)$ и $DFT(B)$ по $DFT(C)$.
- Для заданных $n$ различных чисел $x_0, x_1, \ldots, x_{n-1}$ постройте многочлен $n$-й степени, который имеет корни только в заданных $n$ точках за $O(n \log^2 n)$
- Пусть мы хотим считать преобразование Фурье не в поле комплексных чисел, а в поле остатков по модулю $p$, где $p$~--- простое число. Для каких $p$ такое преобразование можно сделать, как найти соответствующий корень $n$-й степени из единицы $\omega_n$, и как изменится сам алгоритм?
- Даны 2 числа в десятичной системе счисления, каждое состоит из $n$ десятичных цифр. Найдите их произведение за $O(n \log n)$.
- Даны две строки $p$ и $t$ из символов 0 и 1 ($|p| \le |t|$). Найдите расстояние Хэмминга между $p$ и всеми подстроками $t[i..i+|p|-1]$ длины $|p|$ за $O(n \log n)$.
- Задан многочлен $A(x) = \sum\limits_{i=0}^{n - 1} a_i x^i, a_0 \neq 0$. Найдите такой многочлен $B(x)$, что $A(x) \times B(x) = 1 + x^n Q(x)$ для какого-то многочлена $Q(x)$ за $O(n \log^2 n)$.
- То же самое за $O(n \log n)$.
- Каков критерий существования решения и алгоритм восстановления числа в КТО, если убрать требование взаимной простоты модулей $m_1$ и $m_2$?
- Чему равна сумма всех чисел от 0 до $n-1$, взаимнопростых с $n$?
- Найдите $\frac{n!}{p^k} \mod p$, где $k$ - максимальная степень вхождения простого $p$ в $n!$, за $O(p \log n)$
- Докажите, что $gcd$ последовательных чисел Фибоначчи равен 1.
- Докажите, что $gcd(F_n, F_m) = F_{gcd(n, m)}$.
- Для заданных $a$ и нечетного простого $p$, проверьте, что существует $x$: $x^2 \equiv a \mod p$ за $O(\log p)$
- Решите задачу дискретного логарифма для простого модуля $p$ вида $2^k + 1$ за $O(\mathop{poly}(k))$.
- Докажите лемму о паросочетании в графе замен (формулировка тут: [1], доказательство неправильное - неверный индукционный переход)
- Рассмотрим два матроида $M_1$ и $M_2$. Как связаны максимальное независимое множество пересечения $M_1 \cap M_2$ и база $M_1 \cup M_2^*$? ($M_2^*$ - матроид, двойственный $M_2$)
- Докажите теорему Радо: пусть $M$ - матроид с ранговой функцией $r$, $X = X_1 \cup X_2 \cup ...\cup X_k$, причем все $X_i$ попарно не пересекаются. Будем называть независимой системой представителей независимое множество $A$, такое что $|A \cap X_i| \le 1$. Пусть $A_{max}$ - максимальная по мощности независимая система представителей. Тогда $|A_{max}|=\min_{Z\subset \{1,..,k\}}(r(\cup_{i\in Z} X_i)+k-|Z|)$.
- Предложите алгоритм построения максимальной независимой системы представителей.
- Докажите, что длина кратчайшего пути из $S$ в $T$ в алгоритме построения базы пересечения матроидов не убывает.
- Докажите, что число различных длин кратчайшего пути из $S$ в $T$, которые встречаются в алгоритме построения базы пересечения матроидов, есть $O(\sqrt n)$.
- Докажите, что сумма длин кратчайших пути из $S$ в $T$, которые встречаются в алгоритме построения базы пересечения матроидов, есть $O(n \log n)$.
- Игра Шеннона. Рассмотрим игру на связном графе с множеством ребер $E$. Играют два игрока, cut и link, первым ходит cut. Игроки по очереди добавляют себе ребра, не использованные на предыдущих ходах. В конце игры link выигрывает, если по его ребрам можно дойти от любой вершины до любой. Докажите, что link выигрывает при оптимальной игре, если и только если в графе существует два непересекающихся остовных дерева.
- Игра Шеннона на произвольном матроиде. Рассмотрим игру на матроиде $M$. Играют два игрока, cut и link, первым ходит cut. Игроки по очереди выбирают себе элементы носителя, не использованные на предыдущих ходах. В конце игры link выигрывает, если его множество содержит базу матроида. Докажите, что link выигрывает при оптимальной игре, если и только если в графе существует две непересекающихся базы.
- Пусть $M$ - невырожденная квадратная матрица над вещественными числами. Докажите, что для любого множества строк $R$ найдется множество столбцов той же мощности $C$, что миноры $R\times C$ и $\overline{R}\times \overline{C}$ - ненулевые (как $\overline T$ обозначено множество строк/столбцов, не входящих в $T$).
- Задан двудольный граф, каждая вершина имеет вес. Требуется выбрать паросочетание, чтобы суммарный вес покрытых вершин был максимален. Решите эту задачу, не используя сведение к обычной задаче о назначениях.
</wikitex>