Примитивно рекурсивные функции — различия между версиями
(→Вычитания) |
м (rollbackEdits.php mass rollback) |
||
(не показано 12 промежуточных версий 6 участников) | |||
Строка 17: | Строка 17: | ||
<li> <tex>\mathrm{U^n_i}</tex> {{---}} проекция (<tex>i</tex>-ый аргумент среди <tex>n</tex>).</li> | <li> <tex>\mathrm{U^n_i}</tex> {{---}} проекция (<tex>i</tex>-ый аргумент среди <tex>n</tex>).</li> | ||
− | <tex>\mathrm{U^n_i}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, <tex>\mathrm{U^n_i} (x_1, | + | <tex>\mathrm{U^n_i}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, <tex>\mathrm{U^n_i} (x_1, \ldots, x_n) = x_i</tex> |
− | <li> <tex>\mathrm{S}</tex>{{---}} подстановка.</li> | + | <li> <tex>\mathrm{S}</tex>{{---}}подстановка.</li> |
− | Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g_1}, | + | Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g_1}, \ldots, \mathrm{g_n}: \mathbb{N}^{m} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{S}\langle{}\mathrm{f},\mathrm{g_1}, \ldots, \mathrm{g_n}\rangle: \mathbb{N}^{m} \rightarrow \mathbb{N}</tex>. При этом <tex>\mathrm{S}\langle{}\mathrm{f},\mathrm{g_1}, \ldots, \mathrm{g_n}\rangle (x_1, \ldots, x_m) = \mathrm{f}(\mathrm{g_1}(x_1, \ldots, x_m), \ldots \mathrm{g_n}(x_1, \ldots, x_m))</tex> |
<li> <tex>\mathrm{R}</tex> {{---}} примитивная рекурсия.</li> | <li> <tex>\mathrm{R}</tex> {{---}} примитивная рекурсия.</li> | ||
− | Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g}:\mathbb{N}^{n+2} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, при этом <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle (x_1, | + | Если <tex>\mathrm{f}: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex> и <tex>\mathrm{g}:\mathbb{N}^{n+2} \rightarrow \mathbb{N}</tex>, то <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, при этом <tex>\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle (x_1, \ldots, x_n,y) = \left\{\begin{array}{ll} |
− | \mathrm{f}(x_1, | + | \mathrm{f}(x_1, \ldots, x_n) & y = 0\\ |
− | \mathrm{g}(x_1, | + | \mathrm{g}(x_1, \ldots, x_n,y-1,\mathrm{R}\langle{}\mathrm{f},\mathrm{g}\rangle(x_1, \ldots, x_n,y-1)) & y > 0 |
\end{array}\right.</tex> | \end{array}\right.</tex> | ||
<li> <tex>\mu</tex> {{---}} минимизация.</li> | <li> <tex>\mu</tex> {{---}} минимизация.</li> | ||
− | Если <tex>\mathrm{f}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, то <tex>\mu \langle{}\mathrm{f}\rangle: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, при этом <tex>\mu \langle{}\mathrm{f}\rangle (x_1, | + | Если <tex>\mathrm{f}: \mathbb{N}^{n+1} \rightarrow \mathbb{N}</tex>, то <tex>\mu \langle{}\mathrm{f}\rangle: \mathbb{N}^{n} \rightarrow \mathbb{N}</tex>, при этом <tex>\mu \langle{}\mathrm{f}\rangle (x_1, \ldots, x_n)</tex> — такое минимальное число <tex>y</tex>, что <tex>\mathrm{f}(x_1, \ldots, x_n,y) = 0</tex>. Если такого <tex>y</tex> нет, результат данного примитива неопределен. |
</ol> | </ol> | ||
{{Определение | {{Определение | ||
Строка 69: | Строка 69: | ||
====Константа <tex> \textbf M </tex>==== | ====Константа <tex> \textbf M </tex>==== | ||
− | <tex> \textbf M(x) = \underbrace{\mathrm{N}( | + | <tex> \textbf M(x) = \underbrace{\mathrm{N}(\ldots (\mathrm{N}}_{ \text{M раз} }(\mathrm{Z}(x))))</tex> |
<tex> \textbf M^n </tex> {{---}} <tex>n</tex>-местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом. | <tex> \textbf M^n </tex> {{---}} <tex>n</tex>-местная константа, получается аналогичным к <tex> \textbf 0^n </tex> образом. | ||
Строка 112: | Строка 112: | ||
Рассмотрим сначала вычитания единицы <tex> \mathrm{sub_{1}}(x) = x - 1 </tex> | Рассмотрим сначала вычитания единицы <tex> \mathrm{sub_{1}}(x) = x - 1 </tex> | ||
− | <tex> \mathrm{sub_1}(0) = \mathrm{Z} </tex> | + | <tex> \mathrm{sub_1}(0) = \mathrm{Z}(0) </tex> |
<tex> \mathrm{sub_1}(x+1) = x </tex> | <tex> \mathrm{sub_1}(x+1) = x </tex> | ||
Строка 133: | Строка 133: | ||
<tex> \mathrm{eq_0}(0) =\mathrm{N}(0) </tex> | <tex> \mathrm{eq_0}(0) =\mathrm{N}(0) </tex> | ||
− | <tex> \mathrm{eq_0}(y) = \mathrm{h}(y-1,\mathrm{eq}(y-1)) </tex> , где <tex> \mathrm{h}(y-1,\mathrm{eq}(y-1)) = \ | + | <tex> \mathrm{eq_0}(y) = \mathrm{h}(y-1,\mathrm{eq}(y-1)) </tex> , где <tex> \mathrm{h}(y-1,\mathrm{eq}(y-1)) = \mathrm{Z}(x,y-1) </tex> |
Теперь все остальные функции | Теперь все остальные функции | ||
Строка 143: | Строка 143: | ||
<tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{N}(x),y)) </tex> | <tex> \mathrm{lower}(x,y) = \mathrm{mul}(\mathrm{le}(x,y),\mathrm{le}(\mathrm{N}(x),y)) </tex> | ||
− | ==== | + | ==== Условный оператор ==== |
<tex> \mathrm{if}(0,x,y) = y </tex> | <tex> \mathrm{if}(0,x,y) = y </tex> | ||
Строка 149: | Строка 149: | ||
==== Деление ==== | ==== Деление ==== | ||
− | <tex> \mathrm{divide}(x,y) = \Bigl \lfloor \dfrac{x}{y} \Bigr \rfloor </tex>, если <tex> y > 0 </tex>. Если же <tex> y = 0 </tex>, то | + | <tex> \mathrm{divide}(x,y) = \Bigl \lfloor \dfrac{x}{y} \Bigr \rfloor </tex>, если <tex> y > 0 </tex>. Если же <tex> y = 0 </tex>, то значение функции нас не интересует, и можно определить её как угодно. |
Сначала определим <tex> \mathrm{divmax}(x,y) </tex> {{---}} функция равна максимальному числу меньшему или равному <tex> x</tex>, которое нацело делится на <tex> y </tex>. | Сначала определим <tex> \mathrm{divmax}(x,y) </tex> {{---}} функция равна максимальному числу меньшему или равному <tex> x</tex>, которое нацело делится на <tex> y </tex>. | ||
Строка 169: | Строка 169: | ||
==== Работа со списками фиксированной длины ==== | ==== Работа со списками фиксированной длины ==== | ||
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск <tex> n </tex>-ого простого числа. | С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск <tex> n </tex>-ого простого числа. | ||
− | Рассмотрим список из натуральны чисел <tex> [x_1,\ldots,x_n] </tex>, тогда ему в соответствия можно поставить число <tex> p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} </tex>, где <tex> p_i - i</tex>-тое простое число. Как видно из представления,создания списка, взятие <tex> i </tex> - того | + | Рассмотрим список из натуральны чисел <tex> [x_1,\ldots,x_n] </tex>, тогда ему в соответствия можно поставить число <tex> p_1^{x_1+1} \cdot p_2^{x_2+1} \cdot \ldots \cdot p_n^{x_n+1} </tex>, где <tex>p_i</tex> {{---}} <tex>i</tex>-тое простое число. Как видно из представления,создания списка, взятие <tex> i </tex> - того |
элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел. | элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел. | ||
Текущая версия на 19:05, 4 сентября 2022
Содержание
Рекурсивные функции
Строительные блоки рекурсивных функций
Рассмотрим примитивы, из которых будем собирать выражения:
- — ноль.
- — инкремент.
- — проекция ( -ый аргумент среди ).
- —подстановка.
- — примитивная рекурсия.
- — минимизация.
,
, , где .
,
Если
и , то . При этомЕсли
и , то , при этомЕсли
, то , при этом — такое минимальное число , что . Если такого нет, результат данного примитива неопределен.Определение: |
Если некоторая функция | может быть задана с помощью данных примитивов(англ. primitive), то она называется рекурсивной (англ. recursive).
Примитивно рекурсивные функции
Определение: |
Примитивно рекурсивными (англ. Primitively recursive) называют функции, которые можно получить с помощью правил | — .
Заметим, что если
— -местная примитивно рекурсивная функция, то она определена на всем множестве , так как получается путем правил преобразования из всюду определенных функций, и правила преобразования не портят всюду определенность. Говоря неформальным языком, рекурсивные функции напоминают программы, у которых при любых входных данных все циклы и рекурсий завершатся за конечное время. Если же говорить формально, то это свойство рекурсивных функций называется тотальностью.Определение: |
Тотальность (англ. Total Function) — функция, определенная для всех возможных входных данных. |
Благодаря проекторам мы можем делать следующие преобразования:
- В рекурсии не обязательно вести индукцию по последнему аргументу. Следует из того что мы можем с помощью проекторов поставить требуемый аргумент на последнее место.
- В правиле подстановки можно использовать функции с разным числом аргументов. Например, подстановка эквивалентна , но если не константная функция то все подставляемые функции должны иметь хотя бы один аргумент.
Арифметические операции на примитивно рекурсивных функциях
n-местный ноль
— функция нуля аргументов.
Теперь вместо функции
будем использовать константу , обозначив ее как .Константа
— -местная константа, получается аналогичным к образом.
Сложение
, где
Можно преобразовать в более простой вид.
Умножения
Вычитания
Если
, то , иначе .Рассмотрим сначала вычитания единицы
Теперь рассмотрим
Операции сравнения
если , иначе
если , иначе
если , иначе
Сначала выразим
, где
Теперь все остальные функции
Условный оператор
Деление
, если . Если же , то значение функции нас не интересует, и можно определить её как угодно.
Сначала определим
— функция равна максимальному числу меньшему или равному , которое нацело делится на .
Теперь само деления
, где
Остаток от деления выражается так:
Работа со списками фиксированной длины
С помощью описанных выше арифметических операций можно выразить проверку на простоту числа и поиск
-ого простого числа. Рассмотрим список из натуральны чисел , тогда ему в соответствия можно поставить число , где — -тое простое число. Как видно из представления,создания списка, взятие - того элемента и остальные операции являются простыми арифметическими операциями, а следовательно примитивно рекурсивными. Поэтому будем считать что у примитивно рекурсивной функций аргументы и результат могут быть списками из натуральных чисел.Теоремы
Теорема о примитивной рекурсивности вычислимых функций
Теорема: |
Если для вычислимой функции существует примитивно рекурсивная функция , такая что для любых аргументов максимальное количество шагов, за которое будет посчитана на МТ равно , то примитивно рекурсивная функция. |
Доказательство: |
Каждому состоянию МТ поставим в соответствие список из четырех чисел , где:
Тогда всем переходам соответствует функция МТ и возвращающая новое состояние. Покажем что она примитивно рекурсивная . При применении перехода в записывается новый символ,затем из-за сдвига головки в и в конец добавляется новая цифра или удаляется старая, затем в записываетcя символ после сдвига, и в конце перехода в записывается новое состояние автомата. Операции добавления в конец цифры или удаления последней цифры легко выражаются через простые арифметические операции, следовательно они примитивно рекурсивные. Все остальные операции являются простыми операциями над списками, а значит они тоже примитивно рекурсивные. Из этого следует что применения перехода — примитивно рекурсивная функция. В силу того что нужный переход можно выбрать используя конечное число функций следует что и также является примитивно рекурсивной функцией. принимающая состояниеФункции преобразование аргументов в формат входных данных для МТ и получения ответа по состоянию МТ также выражаются через простые арифметические операции а значит они примитивно рекурсивные. Назовем их и . Рассмотрим функцию двух аргументов МТ , число шагов и возвращает состояние МТ после шагов. Покажем что — примитивно рекурсивная функция. которая принимает состояние
Вместо , где подставим и в итоге получим что — примитивно рекурсивная функция. |