Сжатое многомерное дерево отрезков — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 7 промежуточных версий 2 участников) | |||
Строка 3: | Строка 3: | ||
Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\dots,(z_a,z_b)</tex> | Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\dots,(z_a,z_b)</tex> | ||
}} | }} | ||
− | Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(\log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. | + | Вообще говоря, с поставленной задачей справится и [[Многомерное дерево отрезков|обычное <tex>p</tex>-мерное дерево отрезков]]. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(\log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти. |
==Оптимизация== | ==Оптимизация== | ||
− | Для уменьшения количества занимаемой памяти можно провести оптимизацию <tex>p</tex>-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества <tex>A</tex>, лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества <tex>A</tex>, а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были | + | Для уменьшения количества занимаемой памяти можно провести оптимизацию <tex>p</tex>-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества <tex>A</tex>, лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества <tex>A</tex>, а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были «исключены» и заведомо лежат вне желаемого <tex>p</tex>-мерного прямоугольника. Такое «усеченное» многомерное дерево отрезков называется '''сжатым''' (англ. ''compressed''). |
==Построение дерева== | ==Построение дерева== | ||
− | Рассмотрим алгоритм построения сжатого дерева отрезков на | + | Рассмотрим алгоритм построения сжатого дерева отрезков на примере множества <tex>A</tex>, состоящего из <tex>4</tex>-х взвешенных точек в <tex>2</tex>-мерном пространстве (плоскости):<br> |
<tex> | <tex> | ||
− | p=2, | + | p=2,~~n=4,~~A: |
\begin{cases} | \begin{cases} | ||
(1, 3), \mbox{weight}=7 \\ | (1, 3), \mbox{weight}=7 \\ | ||
Строка 27: | Строка 27: | ||
<br> | <br> | ||
===Псевдокод=== | ===Псевдокод=== | ||
− | ''' | + | '''buildSubarrayTree'''('''element[]''' array): |
− | <font color=green>//построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине </font> | + | <font color=green>// построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине </font> |
− | ''' | + | '''buildNormalTree'''('''element[]''' array): |
− | <font color=green> //построение обычного одномерного дерева отрезков на массиве array </font> | + | <font color=green> // построение обычного одномерного дерева отрезков на массиве array </font> |
− | ''' | + | '''getInsideArray'''(vertex v): |
− | <font color=green>//получение подмассива, сохраненного в вершине vertex </font> | + | <font color=green>// получение подмассива, сохраненного в вершине vertex </font> |
− | ''' | + | '''buildCompressedTree'''('''element[]''' array, '''int''' coordinate = 1): <font color=green>// рекурсивная процедура построения сжатого дерева отрезков</font> |
'''if''' coordinate < p | '''if''' coordinate < p | ||
− | sort(array, coordinate) | + | sort(array, coordinate) <font color=green>// сортировка массива по нужной координате </font> |
− | + | segmentTree = buildSubarrayTree(array); | |
− | ''' | + | '''foreach''' v: vertex '''in''' segmentTree |
− | + | buildCompressedTree(getInsideArray(v), coordinate + 1); | |
'''if''' coordinate == p | '''if''' coordinate == p | ||
− | sort(array, coordinate) | + | sort(array, coordinate) |
− | + | buildNormalTree(array); | |
==Анализ полученной структуры== | ==Анализ полученной структуры== |
Текущая версия на 19:07, 4 сентября 2022
Задача: |
Пусть имеется множество | , состоящее из взвешенных точек в -мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в -мерном прямоугольнике
Вообще говоря, с поставленной задачей справится и обычное . Для этого достаточно на -мерное дерево отрезков -том уровне вложенности строить дерево отрезков по всевозможным -тым координатам точек множества , а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за времени, а сама структура данных будет занимать памяти.
Содержание
Оптимизация
Для уменьшения количества занимаемой памяти можно провести оптимизацию
-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества , лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества , а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были «исключены» и заведомо лежат вне желаемого -мерного прямоугольника. Такое «усеченное» многомерное дерево отрезков называется сжатым (англ. compressed).Построение дерева
Рассмотрим алгоритм построения сжатого дерева отрезков на примере множества
- Cоставим массив из всех
- Повторим построение дерева для каждого из них (координата последняя, поэтому в вершинах этих деревьев мы уже ничего строить не будем — подмассивы в каждой вершине можно не сохранять)
Псевдокод
buildSubarrayTree(element[] array): // построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине buildNormalTree(element[] array): // построение обычного одномерного дерева отрезков на массиве array getInsideArray(vertex v): // получение подмассива, сохраненного в вершине vertex buildCompressedTree(element[] array, int coordinate = 1): // рекурсивная процедура построения сжатого дерева отрезков if coordinate < p sort(array, coordinate) // сортировка массива по нужной координате segmentTree = buildSubarrayTree(array); foreach v: vertex in segmentTree buildCompressedTree(getInsideArray(v), coordinate + 1); if coordinate == p sort(array, coordinate) buildNormalTree(array);
Анализ полученной структуры
Легко понять, что сжатое
-мерное дерево отрезков будет занимать памяти: превращение обычного дерева в дерево с сохранением всего подотрезка в каждой вершине будет увеличивать его размер в раз, а сделать это нужно будет раз. Но расплатой станет невозможность делать произвольный запрос модификации: в самом деле, если появится новый элемент, то это приведёт к тому, что мы должны будем в каком-либо дереве отрезков по второй или более координате добавить новый элемент в середину, что эффективно сделать невозможно. Что касается запроса веса, он будет полностью аналогичен запросу в обычном -мерном дереве отрезков за .