Сжатое многомерное дерево отрезков — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показано 7 промежуточных версий 2 участников)
Строка 3: Строка 3:
 
Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\dots,(z_a,z_b)</tex>
 
Пусть имеется множество <tex>A</tex>, состоящее из <tex>n</tex> взвешенных точек в <tex>p</tex>-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в <tex>p</tex>-мерном прямоугольнике <tex>(x_a,x_b),(y_a,y_b),\dots,(z_a,z_b)</tex>
 
}}
 
}}
Вообще говоря, с поставленной задачей справится и обычное <tex>p</tex>-мерное дерево отрезков. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(\log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти.
+
Вообще говоря, с поставленной задачей справится и [[Многомерное дерево отрезков|обычное <tex>p</tex>-мерное дерево отрезков]]. Для этого достаточно на <tex>i</tex>-том уровне вложенности строить дерево отрезков по всевозможным <tex>i</tex>-тым координатам точек множества <tex>A</tex>, а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за <tex>O(\log^p\,n)</tex> времени, а сама структура данных будет занимать <tex>O(n^p)</tex> памяти.
  
 
==Оптимизация==
 
==Оптимизация==
Для уменьшения количества занимаемой памяти можно провести оптимизацию <tex>p</tex>-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества <tex>A</tex>, лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества <tex>A</tex>, а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были "исключены" и заведомо лежат вне желаемого <tex>p</tex>-мерного прямоугольника. Такое "усеченное" многомерное дерево отрезков называется '''сжатым'''.
+
Для уменьшения количества занимаемой памяти можно провести оптимизацию <tex>p</tex>-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества <tex>A</tex>, лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества <tex>A</tex>, а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были «исключены»  и заведомо лежат вне желаемого <tex>p</tex>-мерного прямоугольника. Такое «усеченное»  многомерное дерево отрезков называется '''сжатым''' (англ. ''compressed'').
  
 
==Построение дерева==
 
==Построение дерева==
Рассмотрим алгоритм построения сжатого дерева отрезков на следующем примере:<br>
+
Рассмотрим алгоритм построения сжатого дерева отрезков на примере множества <tex>A</tex>, состоящего из <tex>4</tex>-х взвешенных точек в <tex>2</tex>-мерном пространстве (плоскости):<br>
  
 
<tex>
 
<tex>
p=2, A:
+
p=2,~~n=4,~~A:
 
\begin{cases}  
 
\begin{cases}  
 
(1, 3), \mbox{weight}=7 \\
 
(1, 3), \mbox{weight}=7 \\
Строка 27: Строка 27:
 
<br>
 
<br>
 
===Псевдокод===
 
===Псевдокод===
   '''build_subarray_tree'''('''element[]''' array):
+
   '''buildSubarrayTree'''('''element[]''' array):
       <font color=green>//построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине </font>
+
       <font color=green>// построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине </font>
 
    
 
    
   '''build_normal_tree'''('''element[]''' array):
+
   '''buildNormalTree'''('''element[]''' array):
       <font color=green> //построение обычного одномерного дерева отрезков на массиве array </font>
+
       <font color=green> // построение обычного одномерного дерева отрезков на массиве array </font>
 
    
 
    
   '''get_inside_array'''(vertex v):
+
   '''getInsideArray'''(vertex v):
       <font color=green>//получение подмассива, сохраненного в вершине vertex </font>
+
       <font color=green>// получение подмассива, сохраненного в вершине vertex </font>
 
    
 
    
   '''build_compressed_tree'''('''element[]''' array, '''int''' coordinate = 1):  <font color=green>//рекурсивная процедура построения сжатого дерева отрезков</font>
+
   '''buildCompressedTree'''('''element[]''' array, '''int''' coordinate = 1):  <font color=green>// рекурсивная процедура построения сжатого дерева отрезков</font>
 
       '''if''' coordinate < p  
 
       '''if''' coordinate < p  
             sort(array, coordinate);                               <font color=green>//сортировка массива по нужной координате </font>
+
             sort(array, coordinate)                                <font color=green>// сортировка массива по нужной координате </font>
             segment_tree = build_subarray_tree(array);
+
             segmentTree = buildSubarrayTree(array);
             '''for''' each (vertex v '''in''' segment_tree)
+
             '''foreach''' v: vertex '''in''' segmentTree
                 build_compressed_tree(inside_array(v), coordinate + 1);
+
                 buildCompressedTree(getInsideArray(v), coordinate + 1);
 
       '''if''' coordinate == p
 
       '''if''' coordinate == p
             sort(array, coordinate);
+
             sort(array, coordinate)
             build_normal_tree(array);
+
             buildNormalTree(array);
  
 
==Анализ полученной структуры==
 
==Анализ полученной структуры==

Текущая версия на 19:07, 4 сентября 2022

Задача:
Пусть имеется множество [math]A[/math], состоящее из [math]n[/math] взвешенных точек в [math]p[/math]-мерном пространстве. Необходимо быстро отвечать на запрос о суммарном весе точек, находящихся в [math]p[/math]-мерном прямоугольнике [math](x_a,x_b),(y_a,y_b),\dots,(z_a,z_b)[/math]

Вообще говоря, с поставленной задачей справится и обычное [math]p[/math]-мерное дерево отрезков. Для этого достаточно на [math]i[/math]-том уровне вложенности строить дерево отрезков по всевозможным [math]i[/math]-тым координатам точек множества [math]A[/math], а при запросе использовать на каждом уровне бинарный поиск для установления желаемого подотрезка. Очевидно, запрос будет делаться за [math]O(\log^p\,n)[/math] времени, а сама структура данных будет занимать [math]O(n^p)[/math] памяти.

Оптимизация

Для уменьшения количества занимаемой памяти можно провести оптимизацию [math]p[/math]-мерного дерева отрезков. Для начала, будем использовать дерево отрезков с сохранением всего подотрезка в каждой вершине. Другими словами, в каждой вершине дерева отрезков мы будем хранить не только какую-то сжатую информацию об этом подотрезке, но и все элементы множества [math]A[/math], лежащие в этом подотрезке. На первый взгляд, это только увеличит объем структуры, но не все так просто. При построении будем действовать следующим образом — каждый раз дерево отрезков внутри вершины будем строить не по всем элементам множества [math]A[/math], а только по сохраненному в этой вершине подотрезку. Действительно, незачем строить дерево по всем элементам, когда элементы вне подотрезка уже были «исключены» и заведомо лежат вне желаемого [math]p[/math]-мерного прямоугольника. Такое «усеченное» многомерное дерево отрезков называется сжатым (англ. compressed).

Построение дерева

Рассмотрим алгоритм построения сжатого дерева отрезков на примере множества [math]A[/math], состоящего из [math]4[/math]-х взвешенных точек в [math]2[/math]-мерном пространстве (плоскости):

[math] p=2,~~n=4,~~A: \begin{cases} (1, 3), \mbox{weight}=7 \\ (2, 1), \mbox{weight}=1 \\ (3, 3), \mbox{weight}=8 \\ (4, 2), \mbox{weight}=5 \end{cases} [/math]

  • Cоставим массив из всех [math]n[/math] элементов множества [math]A[/math], упорядочим его по первой координате, построим на нём дерево отрезков с сохранением подмассива в каждой вершине
    Tree built.png
  • Все подмассивы в вершинах получившегося дерева отрезков упорядочим по следующей координате
    Sorted y.png
  • Повторим построение дерева для каждого из них (координата последняя, поэтому в вершинах этих деревьев мы уже ничего строить не будем — подмассивы в каждой вершине можно не сохранять)
    Tree completed.png


Псевдокод

  buildSubarrayTree(element[] array):
     // построение одномерного дерева отрезков на массиве array с сохранением подмассива в каждой вершине 
  
  buildNormalTree(element[] array):
      // построение обычного одномерного дерева отрезков на массиве array 
  
  getInsideArray(vertex v):
     // получение подмассива, сохраненного в вершине vertex 
  
  buildCompressedTree(element[] array, int coordinate = 1):   // рекурсивная процедура построения сжатого дерева отрезков
      if coordinate < p 
           sort(array, coordinate)                                // сортировка массива по нужной координате 
           segmentTree = buildSubarrayTree(array);
           foreach v: vertex in segmentTree 
                buildCompressedTree(getInsideArray(v), coordinate + 1);
      if coordinate == p
            sort(array, coordinate)
            buildNormalTree(array);

Анализ полученной структуры

Легко понять, что сжатое [math]p[/math]-мерное дерево отрезков будет занимать [math]O(n\log^{p-1}\,n)[/math] памяти: превращение обычного дерева в дерево с сохранением всего подотрезка в каждой вершине будет увеличивать его размер в [math]O(\log\,n)[/math] раз, а сделать это нужно будет [math]p-1[/math] раз. Но расплатой станет невозможность делать произвольный запрос модификации: в самом деле, если появится новый элемент, то это приведёт к тому, что мы должны будем в каком-либо дереве отрезков по второй или более координате добавить новый элемент в середину, что эффективно сделать невозможно. Что касается запроса веса, он будет полностью аналогичен запросу в обычном [math]p[/math]-мерном дереве отрезков за [math]O(\log^p\,n)[/math].

См. также

Источники информации