Произведение Адамара рациональных производящих функций — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 30 промежуточных версий 7 участников) | |||
Строка 1: | Строка 1: | ||
− | Одно из наиболее привлекательных свойств рациональных производящих функций {{---}} их замкнутость относительно произведения Адамара. | + | Одно из наиболее привлекательных свойств рациональных [[Производящая функция|производящих функций]] {{---}} их замкнутость относительно произведения Адамара. |
{{Определение | {{Определение | ||
|definition = '''Произведением Адамара''' (англ. ''Hadamard product'') производящих функций <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> называется производящая функция <tex>A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots</tex>. | |definition = '''Произведением Адамара''' (англ. ''Hadamard product'') производящих функций <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> называется производящая функция <tex>A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots</tex>. | ||
}} | }} | ||
− | Таким образом, произведение Адамара двух последовательностей {{---}} это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в [[Задача о счастливых билетах|задаче о числе счастливых билетов]] | + | Таким образом, произведение Адамара двух последовательностей {{---}} это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в [[Задача о счастливых билетах|задаче о числе счастливых билетов]] нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена <tex>A_3</tex>. Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно <tex>a_n</tex>, а число объектов второго типа <tex>b_n</tex> то число пар объектов, составленных из элементов первого и второго типа, равно <tex>a_n b_n</tex>. |
+ | |||
+ | ==Рациональность произведения Адамара== | ||
{{Лемма | {{Лемма | ||
+ | |id=lemma1 | ||
|statement=Производящая функция для последовательности <tex>a_0, a_1, | |statement=Производящая функция для последовательности <tex>a_0, a_1, | ||
a_2, \dots</tex> рациональна тогда и только тогда, когда существуют такие числа <tex>q_1, \dots, q_l</tex> и такие многочлены <tex>p_1(n), | a_2, \dots</tex> рациональна тогда и только тогда, когда существуют такие числа <tex>q_1, \dots, q_l</tex> и такие многочлены <tex>p_1(n), | ||
\dots, p_l(n)</tex>, что начиная с некоторого номера <tex>n</tex> | \dots, p_l(n)</tex>, что начиная с некоторого номера <tex>n</tex> | ||
<tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.</tex> | <tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n.</tex> | ||
− | Выражение в правой части равенства называется квазимногочленом от переменной <tex>n</tex>. | + | Выражение в правой части равенства называется '''квазимногочленом''' (англ. ''quasypolynomial'') от переменной <tex>n</tex>. |
|proof= | |proof= | ||
Строка 17: | Строка 20: | ||
Заметим прежде всего, что производящая функция <tex>(1 - q s)^{-k}</tex> имеет вид | Заметим прежде всего, что производящая функция <tex>(1 - q s)^{-k}</tex> имеет вид | ||
− | <tex>(1 - q s)^{-k} = 1 - {-k \ | + | <tex>(1 - q s)^{-k} = 1 - \begin{pmatrix} -k \\ 1 \end{pmatrix} q s + \begin{pmatrix} -k \\ 2 \end{pmatrix} q^{2} s^{2} - \begin{pmatrix} -k \\ 3 \end{pmatrix} q^{3} s^{3} + \dots = </tex> |
− | :::<tex> = 1+ {k \ | + | :::<tex> = 1+ \begin{pmatrix} k \\ 1 \end{pmatrix} q s + \begin{pmatrix} k+1 \\ 2 \end{pmatrix} q^{2} s^{2} + \begin{pmatrix} k+2 \\ 3 \end{pmatrix} q^{3} s^{3} + \dots =</tex> |
− | :::<tex> = 1 + {k \ | + | :::<tex> = 1 + \begin{pmatrix} k \\ k-1 \end{pmatrix} q s + \begin{pmatrix} k+1 \\ k-1 \end{pmatrix} q^{2} s^{2} + \begin{pmatrix} k+2 \\ k-1 \end{pmatrix}q^{3} s^{3} + \dots</tex> |
Коэффициент при <tex>s^n</tex> в этой производящей функции равен | Коэффициент при <tex>s^n</tex> в этой производящей функции равен | ||
− | <tex>\ | + | <tex>\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n} = P_{k - 1}(n) q^{n}</tex>, |
где <tex>P_{k - 1}(n)</tex> {{---}} многочлен от <tex>n</tex> степени <tex>k - 1</tex>. Всякая рациональная функция от переменной <tex>s</tex> представляется в виде линейной комбинации многочлена и элементарных дробей вида <tex>(1 - q_i s)^{-k_i}</tex>, поэтому коэффициенты соответствующей производящей функции являются квазимногочленами. | где <tex>P_{k - 1}(n)</tex> {{---}} многочлен от <tex>n</tex> степени <tex>k - 1</tex>. Всякая рациональная функция от переменной <tex>s</tex> представляется в виде линейной комбинации многочлена и элементарных дробей вида <tex>(1 - q_i s)^{-k_i}</tex>, поэтому коэффициенты соответствующей производящей функции являются квазимногочленами. | ||
Строка 29: | Строка 32: | ||
<tex>\Leftarrow</tex> | <tex>\Leftarrow</tex> | ||
− | Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена <tex>p(n) q^{n}</tex> соответствующая производящая функция рациональна. Пусть степень многочлена <tex>p</tex> равна <tex>k - 1</tex>. Многочлены <tex>P_0, P_1, \dots, P_{k - 1}</tex>, определенные равенством <tex>\ | + | Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена <tex>p(n) q^{n}</tex> соответствующая производящая функция рациональна. Пусть степень многочлена <tex>p</tex> равна <tex>k - 1</tex>. Многочлены <tex>P_0, P_1, \dots, P_{k - 1}</tex>, определенные равенством <tex>\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n} = P_{k - 1}(n) q^{n}</tex>, образуют базис в пространстве многочленов степени не выше <tex> k - 1</tex>. Действительно, любая последовательность многочленов степеней <tex>0, 1, \dots, k - 1</tex> образует базис в этом пространстве. Поэтому многочлен <tex>p</tex> представляется в виде линейной комбинации многочленов <tex>P_i</tex> и соответствующая производящая функция есть просто линейная комбинация функций <tex>(1 - q s)^{-j}</tex>, <tex>j = 0, 1, \dots, k - 1</tex>. |
Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных <tex>q_i</tex>.}} | Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных <tex>q_i</tex>.}} | ||
{{Теорема | {{Теорема | ||
− | |statement= | + | |statement= Предположим, что производящие функции для последовательностей <tex>a_0, a_1, a_2, \dots</tex> и <tex>b_0, b_1, b_2, \dots</tex> |
− | |proof= Для доказательства теоремы осталось | + | |
+ | <tex>A(s) = a_0 + a_1 s + a_2 s^2 + \dots</tex> и <tex>B(s) = b_0 + b_1 s + b_2 s^2 + \dots</tex> | ||
+ | |||
+ | являются рациональными. Значит производящая функция для их произведения Адамара | ||
+ | |||
+ | <tex>A(s) \circ B(s) = (a_0 b_0) + (a_1 b_1) s + (a_2 b_2) s^2 + \dots</tex>. | ||
+ | |||
+ | является тоже рациональной. Проще говоря, произведение Адамара двух рациональных производящих функций рационально. | ||
+ | |||
+ | |proof= Для доказательства теоремы осталось заметить, что произведение квазимногочленов является квазимногочленом. Это утверждение непосредственно вытекает из формулы <tex>a_n = p_1(n) q_1^n + \dots + p_l(n) q_l^n</tex>.}} | ||
+ | |||
+ | == Примеры применения теоремы == | ||
+ | {{Задача | ||
+ | |definition = Представьте в виде квазимногочлена коэффициент производящей функции <tex>A(s)=\dfrac{1 + 2s}{(1 - 2s)(1 + 3s)}</tex>. | ||
+ | }} | ||
+ | Разобьем дробь на сумму простых дробей: <tex>A(s)=\dfrac{1 + 2s}{(1 - 2s)(1 + 3s)}=\dfrac{1/5}{1 + 3s} + \dfrac{4/5}{1 - 2s}</tex>. | ||
+ | |||
+ | Воспользуемся результатом [[#lemma1|леммы]]: коэффициент при <tex>s^n</tex> равен <tex>\dfrac{(n + 1)(n + 2)\dots(n + k - 1)}{(k - 1)!} q^{n}</tex>. | ||
+ | |||
+ | Для первой дроби <tex>k = 1,\, q = -3</tex>, для второй: <tex>k = 1,\, q = 2</tex>. | ||
+ | |||
+ | Тогда <tex>a_{n} = \dfrac{1}{5} \cdot \dfrac{1}{(1 - 1)!} (-3)^{n} + \dfrac{4}{5} \cdot \dfrac{1}{(1 - 1)!} (2)^{n} = | ||
+ | \dfrac{(-3)^{n}}{5} + \dfrac{4}{5} \cdot 2^{n} </tex>. | ||
+ | |||
+ | {{Задача | ||
+ | |definition = Представьте в виде квазимногочлена коэффициент производящей функции <tex>A(s)=\dfrac{s^2}{(1 - 2s)^{2}(1 + s)(1 - s)}</tex>. | ||
+ | }} | ||
+ | Разобьем на сумму простых дробей: <tex>A(s)=\dfrac{s^2}{(1 - 2s)^{2}(1 + s)(1 - s)} = \dfrac{1/18}{1 + s} + \dfrac{-8/9}{1 - 2s} + \dfrac{1/3}{(1 - 2s)^2} + \dfrac{1/2}{1 - s}</tex>. | ||
+ | |||
+ | Первая дробь: <tex>k = 1,\, q = -1</tex>, вторая: <tex>k = 1,\, q = 2</tex>, третья: <tex>k = 2,\, q = 2</tex>, четвертая: <tex>k = 1,\, q = 1</tex>. | ||
+ | |||
+ | Тогда, используя лемму, получаем, что <tex>a_{n} = \dfrac{(-1)^n}{18} - \dfrac{8}{9} \cdot 2^n + \dfrac{n + 1}{(2 - 1)!} \cdot 2^n + \dfrac{1}{2}\cdot 1^n = \left(n + \dfrac{1}{9}\right) \cdot 2^n + (-1)^{n}\dfrac{1}{18} + \dfrac{1}{2}</tex>. | ||
+ | |||
+ | == См. также == | ||
+ | * [[Производящая функция]] | ||
+ | * [[Задача о счастливых билетах]] | ||
==Источники информации== | ==Источники информации== | ||
* ''Ландо С. К.'', Лекции о производящих функциях. {{---}} 3-е изд., испр. {{---}} М.: МЦНМО, 2007. {{---}} 26с. ISBN 978-5-94057-042-4 | * ''Ландо С. К.'', Лекции о производящих функциях. {{---}} 3-е изд., испр. {{---}} М.: МЦНМО, 2007. {{---}} 26с. ISBN 978-5-94057-042-4 | ||
+ | * [[wikipedia:en:Generating function transformation | Wikipedia {{---}} Generating function transformation]] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] |
Текущая версия на 19:26, 4 сентября 2022
Одно из наиболее привлекательных свойств рациональных производящих функций — их замкнутость относительно произведения Адамара.
Определение: |
Произведением Адамара (англ. Hadamard product) производящих функций | и называется производящая функция .
Таким образом, произведение Адамара двух последовательностей — это последовательность, состоящая из почленных произведений соответственных членов этих последовательностей. Необходимость в производящей функции для произведения Адамара уже встречалась: в задаче о числе счастливых билетов нам понадобилось вычислить сумму квадратов коэффициентов производящего многочлена . Эта необходимость возникает при перечислении пар объектов одинакового порядка: если число объектов первого типа равно , а число объектов второго типа то число пар объектов, составленных из элементов первого и второго типа, равно .
Содержание
Рациональность произведения Адамара
Лемма: |
Производящая функция для последовательности рациональна тогда и только тогда, когда существуют такие числа и такие многочлены , что начиная с некоторого номера
Выражение в правой части равенства называется квазимногочленом (англ. quasypolynomial) от переменной . |
Доказательство: |
Заметим прежде всего, что производящая функция имеет вид
Коэффициент при в этой производящей функции равен, где — многочлен от степени . Всякая рациональная функция от переменной представляется в виде линейной комбинации многочлена и элементарных дробей вида , поэтому коэффициенты соответствующей производящей функции являются квазимногочленами.
Наоборот, предположим, что коэффициенты производящей функции, начиная с некоторого номера, представляются в виде квазимногочлена. Покажем, что в случае квазимногочлена Для произвольного квазимногочлена мы получаем линейную комбинацию функций такого вида при разных соответствующая производящая функция рациональна. Пусть степень многочлена равна . Многочлены , определенные равенством , образуют базис в пространстве многочленов степени не выше . Действительно, любая последовательность многочленов степеней образует базис в этом пространстве. Поэтому многочлен представляется в виде линейной комбинации многочленов и соответствующая производящая функция есть просто линейная комбинация функций , . . |
Теорема: |
Предположим, что производящие функции для последовательностей и
и являются рациональными. Значит производящая функция для их произведения Адамара является тоже рациональной. Проще говоря, произведение Адамара двух рациональных производящих функций рационально. . |
Доказательство: |
Для доказательства теоремы осталось заметить, что произведение квазимногочленов является квазимногочленом. Это утверждение непосредственно вытекает из формулы | .
Примеры применения теоремы
Задача: |
Представьте в виде квазимногочлена коэффициент производящей функции | .
Разобьем дробь на сумму простых дробей:
.Воспользуемся результатом леммы: коэффициент при равен .
Для первой дроби
, для второй: .Тогда
.
Задача: |
Представьте в виде квазимногочлена коэффициент производящей функции | .
Разобьем на сумму простых дробей:
.Первая дробь:
, вторая: , третья: , четвертая: .Тогда, используя лемму, получаем, что
.См. также
Источники информации
- Ландо С. К., Лекции о производящих функциях. — 3-е изд., испр. — М.: МЦНМО, 2007. — 26с. ISBN 978-5-94057-042-4
- Wikipedia — Generating function transformation