Теорема о существовании совершенного паросочетания в графе, полученном из регулярного удалением ребёр — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 6 промежуточных версий 2 участников) | |||
Строка 10: | Строка 10: | ||
Так как <tex>|V(G)|</tex> чётно, то и <tex>odd(G' \setminus S) + |S|</tex> тоже чётно. Из этого следует, что <tex>odd(G' \setminus S) \equiv |S| \pmod 2 </tex>. Из этого факта и того, что <tex>odd(G' \setminus S) > |S|</tex> следует, что <tex>odd(G' \setminus S) \geqslant |S| + 2 ~~~ \textbf{(1)}</tex> | Так как <tex>|V(G)|</tex> чётно, то и <tex>odd(G' \setminus S) + |S|</tex> тоже чётно. Из этого следует, что <tex>odd(G' \setminus S) \equiv |S| \pmod 2 </tex>. Из этого факта и того, что <tex>odd(G' \setminus S) > |S|</tex> следует, что <tex>odd(G' \setminus S) \geqslant |S| + 2 ~~~ \textbf{(1)}</tex> | ||
− | Пусть в графе <tex>G' \setminus S</tex> всего <tex>t</tex> компонент связности, <tex>n</tex> из которых нечётны. Тогда пусть <tex>U_1, \cdots, U_n</tex> {{---}} нечётные компоненты связности <tex>G' \setminus S</tex>, тогда <tex>|odd(G' \setminus S)| = n</tex>, а <tex>U_{n+1}, \cdots, U_t</tex> {{---}} его чётные компоненты связности. Для каждого <tex>i \in [1 \cdots t]</tex> определим три | + | Пусть в графе <tex>G' \setminus S</tex> всего <tex>t</tex> компонент связности, <tex>n</tex> из которых нечётны. Тогда пусть <tex>U_1, \cdots, U_n</tex> {{---}} нечётные компоненты связности <tex>G' \setminus S</tex>, тогда <tex>|odd(G' \setminus S)| = n</tex>, а <tex>U_{n+1}, \cdots, U_t</tex> {{---}} его чётные компоненты связности. Для каждого <tex>i \in [1 \cdots t]</tex> определим три множества: |
+ | |||
+ | [[Файл:Плешник 1.png|300px|thumb|right|Чёрные ребра {{---}} рёбра из <tex>A_i</tex>, красные рёбра {{---}} рёбра из <tex>B_i</tex>, синие рёбра {{---}} рёбра из <tex>C_i</tex>. Обратите внимание, что только чёрные рёбра есть в графе <tex>G'</tex>, синие и красные {{---}} рёбра из <tex>F</tex>]] | ||
<tex>A_i</tex> {{---}} рёбра из <tex>E(G')</tex>, соединяющие <tex>U_i</tex> с <tex>S</tex>, <tex>\alpha_i</tex> {{---}} их количество, то есть <tex>\alpha_i = |A_i|</tex> | <tex>A_i</tex> {{---}} рёбра из <tex>E(G')</tex>, соединяющие <tex>U_i</tex> с <tex>S</tex>, <tex>\alpha_i</tex> {{---}} их количество, то есть <tex>\alpha_i = |A_i|</tex> | ||
Строка 22: | Строка 24: | ||
По лемме [[Совершенное паросочетание в кубическом графе#lemma1 | о сравнимости по модулю 2]] для нечётных компонент связности <tex>G' \setminus S</tex> (то есть <tex>i \in [1 \cdots n]</tex>) <tex>m_i \equiv k \pmod 2</tex>. | По лемме [[Совершенное паросочетание в кубическом графе#lemma1 | о сравнимости по модулю 2]] для нечётных компонент связности <tex>G' \setminus S</tex> (то есть <tex>i \in [1 \cdots n]</tex>) <tex>m_i \equiv k \pmod 2</tex>. | ||
− | <tex>m_i \geqslant \lambda(G) \geqslant k - 1</tex>. Из этого факта и того, что <tex>m_i \equiv k \pmod 2</tex> следует, что <tex>m_i \geqslant k</tex>. Отсюда получаем неравенство: | + | <tex>m_i \geqslant \lambda(G)</tex> (так как граф потерял связность), а <tex>\lambda(G) \geqslant k - 1</tex>. Из этого факта и того, что <tex>m_i \equiv k \pmod 2</tex> следует, что <tex>m_i \geqslant k</tex>. Отсюда получаем неравенство: |
− | <tex>\sum\limits_{i=1}^n \alpha_i + \sum\limits_{i=1}^n \beta_i + \sum\limits_{i=1}^n \gamma_i \geqslant kn ~~~ \textbf{(2)}</tex> | + | <tex>\sum\limits_{i=1}^n m_i = \sum\limits_{i=1}^n (\alpha_i + \beta_i + \gamma_i) = \sum\limits_{i=1}^n \alpha_i + \sum\limits_{i=1}^n \beta_i + \sum\limits_{i=1}^n \gamma_i \geqslant kn ~~~ \textbf{(2)}</tex> |
Заметим, что все множества рёбер <tex>A_i \subset E(G')</tex> и <tex>B_j \subset F</tex> не пересекаются(так как <tex>E(G') = E(G) \setminus F</tex>) и ведут во множество <tex>S</tex>. Поэтому сумма <tex>\sum\limits_{i=1}^t |A_i| + \sum\limits_{i=1}^t |B_i| = \sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i</tex> не превосходит суммарную степень вершин в <tex>S</tex>. Во множестве <tex>S</tex> находится всего <tex>|S|</tex> вершин, степень каждой не превосходит <tex>k</tex>. Поэтому суммарная степень вершин в <tex>S</tex> не превосходит <tex>k|S|</tex>. Отсюда получаем неравенство: | Заметим, что все множества рёбер <tex>A_i \subset E(G')</tex> и <tex>B_j \subset F</tex> не пересекаются(так как <tex>E(G') = E(G) \setminus F</tex>) и ведут во множество <tex>S</tex>. Поэтому сумма <tex>\sum\limits_{i=1}^t |A_i| + \sum\limits_{i=1}^t |B_i| = \sum\limits_{i=1}^t \alpha_i + \sum\limits_{i=1}^t \beta_i</tex> не превосходит суммарную степень вершин в <tex>S</tex>. Во множестве <tex>S</tex> находится всего <tex>|S|</tex> вершин, степень каждой не превосходит <tex>k</tex>. Поэтому суммарная степень вершин в <tex>S</tex> не превосходит <tex>k|S|</tex>. Отсюда получаем неравенство: | ||
Строка 32: | Строка 34: | ||
Заметим, что множества рёбер <tex>B_i</tex> и <tex>C_j</tex>, не пересекаются, так как <tex>B_i</tex> ведут из <tex>U_i</tex> в <tex>S</tex>, а <tex>C_j</tex> ведут из <tex>U_j</tex> в <tex>U_k</tex>, (<tex>k \neq j</tex>). Так как <tex>B_i \subset F</tex> и <tex>C_j \subset F</tex>, то сумма <tex>\sum\limits_{i=1}^t |B_i| + \sum\limits_{i=1}^t |C_i| = \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i</tex> не превосходит мощности <tex>F</tex>, откуда имеем: | Заметим, что множества рёбер <tex>B_i</tex> и <tex>C_j</tex>, не пересекаются, так как <tex>B_i</tex> ведут из <tex>U_i</tex> в <tex>S</tex>, а <tex>C_j</tex> ведут из <tex>U_j</tex> в <tex>U_k</tex>, (<tex>k \neq j</tex>). Так как <tex>B_i \subset F</tex> и <tex>C_j \subset F</tex>, то сумма <tex>\sum\limits_{i=1}^t |B_i| + \sum\limits_{i=1}^t |C_i| = \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i</tex> не превосходит мощности <tex>F</tex>, откуда имеем: | ||
− | <tex>2 \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant 2|F| \leqslant 2k - 2 ~~~ \textbf{(3. | + | <tex>2 \sum\limits_{i=1}^t \beta_i + \sum\limits_{i=1}^t \gamma_i \leqslant 2|F| \leqslant 2k - 2 ~~~ \textbf{(3.2)}</tex> (так как <tex>|F| \leqslant k - 1</tex>) |
Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем | Сложив <tex>\textbf{(3.1)}</tex> и <tex>\textbf{(3.2)}</tex>, получаем |
Текущая версия на 19:17, 4 сентября 2022
Теорема (J. Plesnik, 1972): |
Пусть регулярный граф, с чётным числом вершин, причём , а граф получен из удалением не более рёбер. Тогда в графе есть совершенное паросочетание. — - |
Доказательство: |
Пусть , где , тогдаПредположим, что в совершенного паросочетания., тогда выберем множество Татта , тогда нетТак как чётно, то и тоже чётно. Из этого следует, что . Из этого факта и того, что следует, чтоПусть в графе всего компонент связности, из которых нечётны. Тогда пусть — нечётные компоненты связности , тогда , а — его чётные компоненты связности. Для каждого определим три множества:— рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с , — их количество, то есть — рёбра из , соединяющие с остальными компонентами связности графа , — их количество, то есть . Тогда определим . Тогда — это количество рёбер графа , соединяющих с .По лемме о сравнимости по модулю 2 для нечётных компонент связности (то есть ) . (так как граф потерял связность), а . Из этого факта и того, что следует, что . Отсюда получаем неравенство:
Заметим, что все множества рёбер и не пересекаются(так как ) и ведут во множество . Поэтому сумма не превосходит суммарную степень вершин в . Во множестве находится всего вершин, степень каждой не превосходит . Поэтому суммарная степень вершин в не превосходит . Отсюда получаем неравенство:
Заметим, что множества рёбер и , не пересекаются, так как ведут из в , а ведут из в , ( ). Так как и , то сумма не превосходит мощности , откуда имеем:(так как ) Сложив и , получаем
Так как из неравенств и получаемТогда , следовательно,и, следовательно, , следовательно , что противоречит . Таким образом, множество Татта найти нельзя, значит, в существует совершенное паросочетание. |
Следствия
Заметим, что Теорема Петерсона является следствием из этой теоремы, так как в графах Петерсена , , чётно и
Утверждение: |
Пусть регулярный граф, с чётным числом вершин, причём . Тогда для любого ребра существует совершенное паросочетание графа , содержащее . — - |
Пусть | , а — остальные рёбра, инцидентные вершине . Согласно теореме, в графе есть совершенное паросочетание . Так как покрывается , а — единственное ребро , инцидентное ,
См. также
Источники информации
- Карпов В. Д. - Теория графов, стр 43