Рёберная раскраска двудольного графа — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (rollbackEdits.php mass rollback)
 
(не показана 1 промежуточная версия 1 участника)
(нет различий)

Текущая версия на 19:27, 4 сентября 2022

Основные определения

Определение:
Рёберной раскраской (англ. Edge colouring) графа [math]G(V, E)[/math] называется отображение [math]\varphi[/math] из множества рёбер [math]E[/math] во множество красок [math]\{c_{1} \ldots c_{t}\}[/math], что для для любых двух различных рёбер [math]e_{i}, e_{j}[/math], инцидентных одной вершине, верно [math] \varphi (e_{i}) \neq \varphi (e_{j})[/math].


Определение:
Хроматическим индексом (англ. Chromatic index) [math]\chi '(G)[/math] графа [math]G(V, E)[/math] называется такое минимальное число t, что существует рёберная раскраска графа в t цветов.


Некоторые оценки хроматического индекса

Лемма (о нижней оценке хроматического индекса):
[math]\forall\ G(V, E) : \Delta (G) \leqslant \chi '(G)[/math], где [math]\Delta (G)[/math] — максимальная степень вершины в графе
Доказательство:
[math]\triangleright[/math]
Действительно, давайте рассмотрим вершину максимальной степени в графе. Ей инцидентно ровно [math]\Delta(G)[/math] рёбер. При этом, чтобы все они имели попарно различные цвета, они все должны иметь различные цвета, иначе найдётся пара различных рёбер, инцидентных одной вершине и имеющих одинаковый цвет.
[math]\triangleleft[/math]

Заметим, что в теории графов доказывается более строгое неравенство[1], ограничивающее [math]\chi '(G)[/math]. А именно то, что [math]\forall\ G(V, E) : \Delta (G) \leqslant \chi '(G) \leqslant \Delta (G) + 1[/math].


Рёберная раскраска двудольного графа

Лемма (о совершенном паросочетании):
В двудольном [math]k[/math]-регулярном графе с одинаковыми по размеру долями существует совершенное паросочетание.
Доказательство:
[math]\triangleright[/math]

Возьмём [math]L[/math] — произвольное подмножество левой доли. Рассмотрим подграф образованный [math]L[/math] и множеством всех их соседей из правой доли [math]R[/math]. Все вершины левой доли нашего подграфа будут иметь степень [math]k[/math], а степени вершин правой доли не превосходят [math]k[/math].

Посчитаем количество рёбер [math]m_{L}[/math] в данном подграфе. В силу его двудольности, это число будет равняться сумме степеней вершин одной из долей. [math]m_{L} = \underset{{v\in L}}{\sum} deg(v) = |L|\cdot k = \underset{{u\in R}}{\sum} deg(u) \leqslant |R|\cdot k[/math]. Из этого мы получаем, что [math]|L|\leqslant |R|[/math].

Значит в данном графе выполняется Теорема Холла. Из чего следует, что в нём есть совершенное паросочетание.
[math]\triangleleft[/math]
Теорема:
Существует рёберная раскраска двудольного графа [math]G[/math] в [math]\Delta(G)[/math] цветов. Иными словами, для двудольного графа [math]\chi '(G) = \Delta(G)[/math]
Доказательство:
[math]\triangleright[/math]

В доказательство рассмотрим следующий алгоритм поиска такой раскраски:

  1. Для начала сделаем доли графа одинаковыми по размеру, дополнив меньшую из долей необходимым количеством изолированных вершин;
  2. Следующим жадным алгоритмом сделаем его [math]\Delta(G)[/math]-регулярным: пока граф не регулярный возьмём вершину левой доли степени меньше [math]\Delta(G)[/math] и аналогичную вершину правой доли. Соединим их ребром;
  3. Мы получили регулярный двудольный граф с равными долями. По лемме о совершенном паросочетании в таком графе есть совершенное паросочетание. Найдём его, например алгоритмом Куна, и удалим из графа;
  4. Заметим, что граф всё ещё остался регулярным, так как степень каждой вершины уменьшилась на [math]1[/math]. Будем повторять процесс, пока в графе есть рёбра;
  5. В итоге мы разобьём рёбра графа на [math]\Delta(G)[/math] совершенных паросочетаний;
  6. В конце нам остаётся каждое паросочетание покрасить в свой цвет и удалить рёбра, которых не было в изначальном графе;


Докажем, что жадный алгоритм из пункта [math]2[/math] всегда выполняет поставленную задачу.

Предположим, что это не так, и, не нарушая общности, у нас остались вершины в правой доле степени меньше [math]\Delta(G)[/math], а в левой таких вершин нет. Давайте посчитаем количество рёбер [math]m[/math] в графе. Из левой доли исходит [math]|L| \cdot \Delta(G)[/math] рёбер. В правую же приходит не более [math]|R| \cdot \Delta(G)[/math] рёбер, но так как существует вершина степени меньше [math]\Delta(G)[/math], то неравенство строгое. Получается [math]|L| \cdot \Delta(G) = m \lt |R| \cdot \Delta(G)[/math]. Но в нашем графе [math]|L| = |R|[/math]. Следовательно [math]\Delta(G) \lt \Delta(G)[/math], что приводит нас к противоречию.


Таким образом мы нашли раскраску двудольного графа в [math]\Delta(G)[/math] цветов и предъявили алгоритм её получения. А по лемме о нижней оценки, меньше цветов использовать нельзя. Следовательно [math]\chi '(G) = \Delta(G)[/math]

Заметим, что наш жадный алгоритм может проводить кратные рёбра в графе. Однако ни лемма о совершенном паросочетании, ни Теорема Холла не используют в своём доказательстве отсутствие таковых.
[math]\triangleleft[/math]

См. также

Примечания

Источники информации