Композиция отношений — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Степень отношений)
м (rollbackEdits.php mass rollback)
 
(не показано 7 промежуточных версий 5 участников)
Строка 5: Строка 5:
 
<tex>\forall a \in A, c \in C : a (R \circ S) c \iff \exists b \in B : (a R b) \wedge (b S c) </tex>.
 
<tex>\forall a \in A, c \in C : a (R \circ S) c \iff \exists b \in B : (a R b) \wedge (b S c) </tex>.
 
}}
 
}}
 
+
Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> {{---}}  отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> {{---}}  отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> {{---}}  отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".
Примером такого отношения может служить отношение на некотором множестве <tex>A</tex> населенных пунктов <tex>R\subseteq A\times A</tex> - отношение "можно доехать на поезде", а <tex>S\subseteq A\times A</tex> - отношение "можно доехать на автобусе". Тогда отношение <tex>R\circ S\subseteq A\times A</tex> - отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".
 
  
 
== Степень отношений ==
 
== Степень отношений ==
Строка 23: Строка 22:
 
В связи с этим понятием, также вводятся обозначения:
 
В связи с этим понятием, также вводятся обозначения:
  
<tex> R^{+} = \bigcup\limits^{\infty}_{i=1} R^{i}; </tex>
+
<tex> R^{+} = \bigcup\limits^{\infty}_{i=1} R^{i} </tex> — [[Транзитивное замыкание]] (англ. ''transitive closure'') отношения <tex>R</tex>;
  
<tex> R^{*} = \bigcup\limits^{\infty}_{i=0} R^{i} </tex> — [[Транзитивное замыкание]] (англ. ''transitive closure'') отношения <tex>R</tex>
+
 
 +
<tex> R^{*} = \bigcup\limits^{\infty}_{i=0} R^{i} </tex> — Транзитивно-рефлексивное замыкание отношения <tex>R</tex>
  
 
== Обратное отношение ==
 
== Обратное отношение ==
Строка 38: Строка 38:
 
{{Определение
 
{{Определение
 
|definition=
 
|definition=
'''Ядром отношения''' <tex>R</tex> называется отношение <tex> R\circ R^{-1} </tex>
+
'''Ядром отношения''' (англ. ''kernel of relation'') <tex>R</tex> называется отношение <tex> R\circ R^{-1} </tex>
 
}}
 
}}
  
Строка 55: Строка 55:
  
 
* Обратное отношение к пересечению отношений <tex>R </tex> и  <tex>S </tex> есть пересечение отношений, обратных к <tex>R </tex> и  <tex>S : </tex> &nbsp;<tex> (R \cap S) ^ {-1} = (R^{-1}) \cap (S^{-1}) </tex>
 
* Обратное отношение к пересечению отношений <tex>R </tex> и  <tex>S </tex> есть пересечение отношений, обратных к <tex>R </tex> и  <tex>S : </tex> &nbsp;<tex> (R \cap S) ^ {-1} = (R^{-1}) \cap (S^{-1}) </tex>
 +
 +
== См. также ==
 +
* [[Бинарное_отношение|Бинарное отношение]]
 +
* [[Транзитивное_замыкание|Транзитивное замыкание]]
  
 
==Источники информации==
 
==Источники информации==

Текущая версия на 19:28, 4 сентября 2022

Определение:
Композицией (произведением, суперпозицией) бинарных отношений (англ. composition of binary relations) [math]R\subseteq A\times B[/math] и [math]S\subseteq B\times C[/math] называется такое отношение [math] (R \circ S) \subseteq A\times C[/math], что: [math]\forall a \in A, c \in C : a (R \circ S) c \iff \exists b \in B : (a R b) \wedge (b S c) [/math].

Примером такого отношения может служить отношение на некотором множестве [math]A[/math] населенных пунктов [math]R\subseteq A\times A[/math] — отношение "можно доехать на поезде", а [math]S\subseteq A\times A[/math] — отношение "можно доехать на автобусе". Тогда отношение [math]R\circ S\subseteq A\times A[/math] — отношение "можно добраться из пункта А в пункт Б, сначала проехав на поезде, а потом на автобусе (только по одному разу)".

Степень отношений

Определение:
Степень отношения (англ. power of relation) [math]R^{n} \subseteq A\times A[/math], определяется следующим образом:
  • [math] R^{n} = R^{n-1} \circ R; [/math]
  • [math] R^{1} = R; [/math]
  • [math] R^{0} = \{ (x, x) \mid x \in A \}[/math];


В связи с этим понятием, также вводятся обозначения:

[math] R^{+} = \bigcup\limits^{\infty}_{i=1} R^{i} [/math]Транзитивное замыкание (англ. transitive closure) отношения [math]R[/math];


[math] R^{*} = \bigcup\limits^{\infty}_{i=0} R^{i} [/math] — Транзитивно-рефлексивное замыкание отношения [math]R[/math]

Обратное отношение

Определение:
Отношение [math]R^{-1} \subseteq B\times A[/math] называют обратным (англ. inverse relation) для отношения [math] R \subseteq A\times B[/math], если: [math] bR^{-1}a \iff aRb [/math]


Определение:
Ядром отношения (англ. kernel of relation) [math]R[/math] называется отношение [math] R\circ R^{-1} [/math]


Свойства

Композиция отношений обладает следующими свойствами:

  • Ядро отношения [math] R [/math] симметрично:   [math]a (R \circ R^{-1}) b \iff b (R \circ R^{-1})a [/math]
  • Композиция отношений ассоциативна:   [math] (R \circ S) \circ T = R \circ (S \circ T) [/math]
  • Обратное отношение для отношения, являющемуся обратным к [math] R [/math] есть само [math] R :[/math]   [math] (R^{-1})^{-1} = R [/math]
  • Обратное отношение к композиции отношений [math]R [/math] и [math]S [/math] есть композиция отношений, обратных к [math]R [/math] и [math]S : [/math]   [math] (R \circ S) ^ {-1} = (S ^ {-1}) \circ (R ^ {-1}) [/math]
  • Обратное отношение к объединению отношений [math]R [/math] и [math]S [/math] есть объединение отношений, обратных к [math]R [/math] и [math]S : [/math]  [math] (R \cup S) ^ {-1} = (R^{-1}) \cup (S^{-1}) [/math]
  • Обратное отношение к пересечению отношений [math]R [/math] и [math]S [/math] есть пересечение отношений, обратных к [math]R [/math] и [math]S : [/math]  [math] (R \cap S) ^ {-1} = (R^{-1}) \cap (S^{-1}) [/math]

См. также

Источники информации