Задача об устойчивом паросочетании — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 13 промежуточных версий 3 участников) | |||
Строка 1: | Строка 1: | ||
+ | {{Определение | ||
+ | |definition = | ||
+ | Пара <tex>\langle A, b\rangle</tex> называется '''неустойчивой''' (англ. ''unstable pair''), если: | ||
+ | # В паросочетании есть пары <tex>\langle A, a\rangle</tex> и <tex>\langle B, b\rangle</tex> (<tex>A</tex> женат на <tex>a</tex>, <tex>B</tex> женат на <tex>b</tex>); | ||
+ | # <tex>A</tex> предпочитает <tex>b</tex> элементу <tex>a</tex>; | ||
+ | # <tex>b</tex> предпочитает <tex>A</tex> элементу <tex>B</tex>. | ||
+ | }} | ||
{{Определение | {{Определение | ||
|definition='''Устойчивое паросочетание''' (англ. ''stable matching'') — [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях| паросочетание]] без неустойчивых пар. | |definition='''Устойчивое паросочетание''' (англ. ''stable matching'') — [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях| паросочетание]] без неустойчивых пар. | ||
Строка 4: | Строка 11: | ||
{{Задача | {{Задача | ||
|definition= | |definition= | ||
− | Найти полное устойчивое паросочетание между элементами двух множеств размера <tex>< | + | Найти полное устойчивое паросочетание между элементами двух множеств размера <tex>n</tex>, имеющими свои предпочтения.}} |
== Основная задача == | == Основная задача == | ||
Строка 18: | Строка 25: | ||
Рассмотрим некоторое [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях| паросочетание]] | Рассмотрим некоторое [[Паросочетания: основные определения, теорема о максимальном паросочетании и дополняющих цепях| паросочетание]] | ||
в МЖ. | в МЖ. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Алгоритм Гейла-Шепли == | == Алгоритм Гейла-Шепли == | ||
− | Решение задачи было описано в <tex>1962</tex> году математиками Девидом Гейлом ( | + | Решение задачи было описано в <tex>1962</tex> году математиками Девидом Гейлом (Университет Брауна) и Ллойдом Шепли (Принстонский университет) в статье «Поступление в колледж и стабильность браков» (College admissions and the stability of marriage) в журнале American Mathematical Monthly |
<ref>https://ru.wikipedia.org/wiki/American_Mathematical_Monthly American Mathematical Monthly 69, 9-14, 1962.</ref>. Набор правил, следование которым всегда приводит к образованию стабильных пар, получил название алгоритма Гейла-Шепли или «алгоритма отложенного согласия» (алгоритм предложи-и-откажи). | <ref>https://ru.wikipedia.org/wiki/American_Mathematical_Monthly American Mathematical Monthly 69, 9-14, 1962.</ref>. Набор правил, следование которым всегда приводит к образованию стабильных пар, получил название алгоритма Гейла-Шепли или «алгоритма отложенного согласия» (алгоритм предложи-и-откажи). | ||
Строка 41: | Строка 41: | ||
=== Описание в псевдокоде === | === Описание в псевдокоде === | ||
− | + | <font color="green">// Изначально все мужчины не женаты и все женщины незамужние.</font> | |
− | + | '''while''' существует свободный мужчина | |
− | + | M = некоторый свободный мужчина | |
− | + | w = первая женщина из текущего списка M | |
− | + | '''if''' w свободна | |
− | + | помечаем M и w помолвленными | |
− | + | '''else if''' w предпочитает M своему текущему жениху M' | |
− | + | помечаем M и w помолвленными | |
− | + | вычёркиваем w из списка предпочтений M' | |
− | + | помечаем M' свободным | |
− | + | '''else''' | |
+ | вычёркиваем w из списка предпочтений M | ||
− | Время работы алгоритма {{---}} <tex>O(n^2)</tex>, так как количество итераций цикла <tex>\mathrm {while}</tex> не превосходит <tex>O(n^2)</tex>. | + | Время работы алгоритма {{---}} <tex>O(n^2)</tex>, так как количество итераций цикла <tex>\mathrm {while}</tex> не превосходит <tex>O(n^2)</tex>, где <tex>n</tex> равно размеру каждого из данных множеств. |
=== Доказательство корректности === | === Доказательство корректности === | ||
Строка 100: | Строка 101: | ||
|proof= | |proof= | ||
Предположим <tex>\langle A, b\rangle</tex> (где <tex>A</tex>, <tex>B</tex> — мужчины; <tex>a</tex>, <tex>b</tex> — женщины; <tex>A</tex> женат на <tex>a</tex>, <tex>B</tex> женат на <tex>b</tex>) — нестабильная пара в паросочетании, найденном алгоритмом Гейла-Шепли. Возможны два случая: | Предположим <tex>\langle A, b\rangle</tex> (где <tex>A</tex>, <tex>B</tex> — мужчины; <tex>a</tex>, <tex>b</tex> — женщины; <tex>A</tex> женат на <tex>a</tex>, <tex>B</tex> женат на <tex>b</tex>) — нестабильная пара в паросочетании, найденном алгоритмом Гейла-Шепли. Возможны два случая: | ||
− | # <tex>A</tex> не делал | + | # <tex>A</tex> не делал предложение <tex>b</tex>. Значит, <tex>A</tex> находит <tex>a</tex> более привлекательной, чем <tex>b</tex>. Но чтобы рассматриваемая пара была неустойчивой, необходимо, чтобы <tex>b</tex> для <tex>A</tex> была более привлекательна, чем <tex>a</tex>. Следовательно, <tex>\langle A, b\rangle</tex> — устойчивая пара. |
# <tex>A</tex> делал предложение <tex>b</tex>. Тогда был такой момент, когда <tex>b</tex> отказала <tex>A</tex>, значит, <tex>b</tex> находит <tex>B</tex> более привлекательным, чем <tex>A</tex>. Снова получается, что <tex>\langle A, b\rangle</tex> — устойчивая пара. | # <tex>A</tex> делал предложение <tex>b</tex>. Тогда был такой момент, когда <tex>b</tex> отказала <tex>A</tex>, значит, <tex>b</tex> находит <tex>B</tex> более привлекательным, чем <tex>A</tex>. Снова получается, что <tex>\langle A, b\rangle</tex> — устойчивая пара. | ||
Текущая версия на 19:05, 4 сентября 2022
Определение: |
Пара
| называется неустойчивой (англ. unstable pair), если:
Определение: |
Устойчивое паросочетание (англ. stable matching) — паросочетание без неустойчивых пар. |
Задача: |
Найти полное устойчивое паросочетание между элементами двух множеств размера | , имеющими свои предпочтения.
Основная задача
Есть
мужчин и женщин. Они обладают следующими особенностями:- Каждый человек оценивает лишь людей противоположного пола (все гетеросексуальны);
- Каждый мужчина может отсортировать женщин от наименее привлекательной к наиболее привлекательной, причем его предпочтения не меняются (у каждого мужчины своя функция оценки);
- Каждая женщина может отсортировать мужчин от наименее привлекательного к наиболее привлекательному, причем её предпочтения не меняются (у каждой женщины своя функция оценки).
Очевидным образом по такому определению строится полный двудольный граф (левая доля — мужчины, правая — женщины), назовем его МЖ.
Рассмотрим некоторое паросочетание в МЖ.
Алгоритм Гейла-Шепли
Решение задачи было описано в [1]. Набор правил, следование которым всегда приводит к образованию стабильных пар, получил название алгоритма Гейла-Шепли или «алгоритма отложенного согласия» (алгоритм предложи-и-откажи).
году математиками Девидом Гейлом (Университет Брауна) и Ллойдом Шепли (Принстонский университет) в статье «Поступление в колледж и стабильность браков» (College admissions and the stability of marriage) в журнале American Mathematical MonthlyИнтуитивное описание
- Мужчины делают предложение наиболее предпочитаемой женщине.
- Каждая женщина из всех поступивших предложений выбирает наилучшее и отвечает на него «может быть» (помолвка), на все остальные отвечает «нет» (отказ).
- Мужчины, получившие отказ, обращаются к следующей женщине из своего списка предпочтений, мужчины, получившие ответ «может быть», ничего не делают.
- Если женщине пришло предложение лучше предыдущего, то она прежнему претенденту (которому ранее сказала «может быть») говорит «нет», а новому претенденту говорит «может быть».
- Шаги - повторяются, пока у всех мужчин не исчерпается список предложений, в этот момент женщины отвечают «да» на те предложения «может быть», которые у них есть в настоящий момент.
Описание в псевдокоде
// Изначально все мужчины не женаты и все женщины незамужние. while существует свободный мужчина M = некоторый свободный мужчина w = первая женщина из текущего списка M if w свободна помечаем M и w помолвленными else if w предпочитает M своему текущему жениху M' помечаем M и w помолвленными вычёркиваем w из списка предпочтений M' помечаем M' свободным else вычёркиваем w из списка предпочтений M
Время работы алгоритма —
, так как количество итераций цикла не превосходит , где равно размеру каждого из данных множеств.Доказательство корректности
Утверждение (Наблюдение | ):
Мужчины делают предложения женщинам в порядке убывания симпатии. |
Утверждение (Наблюдение | ):
Как только женщина была помолвлена, она не может стать непомолвленной, она может только улучшить свой выбор (сказать «может быть» более предпочтительному кандидату). |
Для начала покажем, что алгоритм завершит свою работу.
Лемма (Лемма | ):
Алгоритм завершается после максимум итераций цикла . |
Доказательство: |
На каждой итерации мужчина делает предложение очередной женщине. Но всего может быть не более | предложений.
Теперь покажем, что по завершении алгоритма задача будет решена.
Лемма (Лемма | ):
Все мужчины и женщины будут заняты. |
Доказательство: |
Предположим, что некоторый мужчина (наблюдению , не получала предложений. Но сделал предложения всем женщинам, так как он остался не женат. Получаем противоречие. Таким образом, все мужчины заняты. Аналогичные рассуждения применяем для женщин. Пусть какая-то женщина незамужняя. Значит, есть мужчина, который остался не женат. Но мы доказали, что по завершении алгоритма все мужчины заняты. Снова пришли к противоречию. ) не женат по завершении алгоритма. Тогда и некоторая женщина ( ) незамужняя. По |
Лемма (Лемма | ):
После завершения алгоритма не будет неустойчивых пар. |
Доказательство: |
Предположим (где , — мужчины; , — женщины; женат на , женат на ) — нестабильная пара в паросочетании, найденном алгоритмом Гейла-Шепли. Возможны два случая:
|
Анализ полученного алгоритмом паросочетания
Алгоритм Гейла-Шепли гарантирует, что будет найдено некоторое решение задачи. Но решений может быть более одного. Зададимся вопросом, какими свойствами обладает решение, найденное алгоритмом.
Лемма (man-optimality): |
Из всех возможных решений алгоритмом Гейла-Шепли будет найдено решение, наилучшее для мужчин (каждый мужчина получает в жены женщину, наилучшую из всех возможных при условии корректности решения). |
Доказательство: |
Докажем от противного, что для каждого мужчины не существует устойчивого паросочетания, в котором его супругой была бы более желанная для него женщина. Предположим, для мужчины это свойство не выполняется. Так как он оказался женат не на лучшей из кандидатур, то существует женщина , которая предпочла ему другого, более привлекательного мужчину , при этом женщина для мужчины стоит на первом месте в его текущем списке. Предположим, существует устойчивое паросочетание, содержащее . По определению, в устойчивом паросочетании нет неустойчивых пар. Пара станет неустойчивой, если будет предпочитать своей супруге. Значит, женат на ком-то, кто лучше, чем . Но такое невозможно, так как стоит для него на первом месте. Таким образом, если женщина вычёркивается из списка предпочтений мужчины , то любое паросочетание, содержащее , неустойчиво. |
Лемма (woman-pessimality): |
Из всех возможных решений алгоритмом Гейла-Шепли будет найдено решение, наихудшее для женщин. |
Доказательство: |
Пусть Предположим, , — мужчины; , — женщины; женат на , женат на . — стабильная пара в паросочетании , найденном алгоритмом Гейла-Шепли, но не самый худший выбор для . Тогда существует стабильная пара в паросочетании , в которой замужем за , который менее привлекателен, чем . Тогда пусть мужем будет в паросочетании . Получается считает более привлекательной, чем . Соответственно — нестабильная пара в паросочетании . То есть для есть мужчина, который более привлекателен, чем её муж. |
Обобщения задачи
Интересно, что данная задача не всегда имеет решение, если допустить однополые пары (устойчивого паросочетания может не быть) [2].
Случай же, когда у нас есть
мужчин и женщин ( ) легко сводится к описанной выше задаче. Рассмотрим ( аналогично). Добавим фиктивных мужчин, которые являются наименее привлекательными с точки зрения каждой из женщин. Тогда если в найденном алгоритмом Гейла-Шепли паросочетании некоторая женщина будет замужем за таким фиктивным мужчиной, то это будет означать, что она на самом деле осталась без пары.Также интересна задача о выборе учебного заведения: вместо множества мужчин введем множество университетов, а вместо множества женщин — множество кандидатов, подающих заявления на поступление. Причем в каждом университете есть квота на количество студентов, которое университет может принять. Задача очевидно сводится к основной добавлением
"филиалов" для каждого университета ( — квота). И добавлением фиктивного университета (поступление в который означает, что кандидату придется попробовать поступить через год).Применения в реальной жизни
Задача о нахождении устойчивого паросочетания и её решение имеют множество применений в реальной жизни, лишь некоторые из них:
- Распределение студентов по коллеждам в США
- Распределение интернов по больницам
- Распределение донорских органов по нуждающимся в них людям
Решение данной задачи было отмечено при вручении Нобелевской премии по экономике в
году за «теорию стабильного распределения и практическое применение рыночных моделей». Её получили один из создателей алгоритма, Ллойд Шепли, а также Элвин Рот, во многом развивший исследования Ллойда Шепли и Дэвида Гейла. Сам Гейл не был удостоен премии, вероятно, лишь в силу того, что умер в году.Примечания
- ↑ https://ru.wikipedia.org/wiki/American_Mathematical_Monthly American Mathematical Monthly 69, 9-14, 1962.
- ↑ https://ru.wikipedia.org/wiki/Задача_о_соседях_по_комнате Задача о соседях по комнате