Тестовая страница — различия между версиями
| Rybak (обсуждение | вклад) м (фывае) | м (rollbackEdits.php mass rollback) | ||
| (не показано 16 промежуточных версий 6 участников) | |||
| Строка 1: | Строка 1: | ||
| <wikitex> | <wikitex> | ||
| − | $\ | + | {{TODO|t=НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ}} | 
| + | {{Теорема | ||
| + | |statement= | ||
| + | Если $f$ — функция ограниченной вариации ($f \in \bigvee(a, b)$), то ее можно представить в виде разности монотонно неубывающих функций ($f = f_1 - f_2$). | ||
| + | |proof= | ||
| + | Возьмем в качестве $f_1$ функцию $f_1(x) = \bigvee\limits_a^x (f)$, тогда по аддитивности она будет не убывать. | ||
| + | Определим как $f_2$ функцию $f_2(x) = f_1(x) - f(x)$. Докажем, что она монотонно не убывает. | ||
| + | $a < x_1 < x_2 < b$. Надо доказать, что $f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)$, или что $f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)$ (используем утверждение 1). | ||
| + | Но действительно $f(x_2) - f(x_1) \le | f(x_2) - f(x_1) | \le \bigvee\limits_{x_1}^{x_2} (f)$, ч. т. д.	 | ||
| + | }} | ||
| − | |||
| − | |||
| − | |||
| </wikitex> | </wikitex> | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Текущая версия на 19:10, 4 сентября 2022
<wikitex>
TODO: НЕ ОЧЕНЬ ПОНИМАЮ, ЗАЧЕМ ВООБЩЕ ЭТО УТСВЕРЖДЕНИЕ ТУТ
| Теорема: | 
| Если $f$ — функция ограниченной вариации ($f \in \bigvee(a, b)$), то ее можно представить в виде разности монотонно неубывающих функций ($f = f_1 - f_2$). | 
| Доказательство: | 
| Возьмем в качестве $f_1$ функцию $f_1(x) = \bigvee\limits_a^x (f)$, тогда по аддитивности она будет не убывать. Определим как $f_2$ функцию $f_2(x) = f_1(x) - f(x)$. Докажем, что она монотонно не убывает. $a < x_1 < x_2 < b$. Надо доказать, что $f_1(x_1) - f(x_1) \le f_1(x_2) - f(x_2)$, или что $f(x_2) - f(x_1) \le f_1(x_2) - f_1(x_1) = \bigvee\limits_{x_1}^{x_2} (f)$ (используем утверждение 1).Но действительно $f(x_2) - f(x_1) \le | 
</wikitex>
