Теорема о поглощении — различия между версиями
Hazzus (обсуждение | вклад) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 3 промежуточные версии 2 участников) | |||
Строка 69: | Строка 69: | ||
− | Рассмотрим путь из <tex>i</tex>-го состояния в поглощающее состояние <tex>j</tex>. Пусть мы совершили <tex> | + | Рассмотрим путь из <tex>i</tex>-го состояния в поглощающее состояние <tex>j</tex>. Пусть мы совершили <tex>m</tex> шагов из состояния <tex>i</tex>, тогда обозначим <tex>p_{m}</tex> — вероятность попасть в поглощающее состояние <tex>j</tex> за такое количество шагов. Заметим, что <tex>p_{m} < 1</tex> |
− | Теперь обобщим в большую сторону для любого количества шагов: пусть | + | Теперь обобщим в большую сторону для любого количества шагов: пусть <tex>p = \max(p_{m})< 1</tex>. В таком случае <tex>p</tex> — наибольшая вероятность попасть в поглощающее состояние <tex>j</tex>, совершив при этом не более чем <tex>m</tex> шагов. |
Тогда вероятность перехода в состояние <tex>j</tex> на шаге <tex>m</tex> равна <tex>p_{m} = \sum\limits_{j} {q^{m}_{ij}}</tex>, где <tex>q_{ij}^{m}</tex> — элемент матрицы <tex>Q^{m}</tex>. | Тогда вероятность перехода в состояние <tex>j</tex> на шаге <tex>m</tex> равна <tex>p_{m} = \sum\limits_{j} {q^{m}_{ij}}</tex>, где <tex>q_{ij}^{m}</tex> — элемент матрицы <tex>Q^{m}</tex>. |
Текущая версия на 19:18, 4 сентября 2022
Определение: |
Матрицу | называют непоглощающей (англ. not-absorbing), если она не содержит поглощающих состояний. То есть
Определение: |
Стохастическую матрицу с поглощающими состояниями и непоглощающими, можно перевести в каноническую форму (англ. canonical form):
где , — единичная матрица ( ), — нулевая матрица ( ), — ненулевая поглощающая матрица ( ) и — непоглощающая ( ). Первые состояний переходные и последние состояний поглощающие. |
Теорема (о поглощении): |
Если цепь поглощающая, то с вероятностью, равной поглощающее состояние. , она перейдет в |
Доказательство: |
Пусть матрица переходов, где элемент равен вероятности перехода из -го состояния в -ое. Приведем ее в каноническую форму: —
. Произведение единичной матрицы на саму себя есть единичная матрица ( ); — некоторые значения (не важны для доказательства теоремы, так как чтобы доказать теорему достаточно доказать, что непоглощающие состояния стремятся к 0).Продолжив вычисления, получим, что имеет следующий вид: .Докажем, что , при .
Теперь обобщим в большую сторону для любого количества шагов: пусть . В таком случае — наибольшая вероятность попасть в поглощающее состояние , совершив при этом не более чем шагов.Тогда вероятность перехода в состояние на шаге равна , где — элемент матрицы .В то же время, В итоге получаем, что непоглощающие состояния стремятся к потому что по условию обозначения . Возведем обе части в степень , получим: , а значит поглощающие в итоге приходят к , то есть цепь приходит в поглощающее состояние. |
См.также
Источники информации
- Дж. Кемени, Дж. Снелл — "Конечные цепи Маркова", издание "Наука", 1970г., стр. 62