Классы чисел — различия между версиями
Senya (обсуждение | вклад) (→См. также) (Метки: правка с мобильного устройства, правка из мобильной версии) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 22 промежуточные версии 2 участников) | |||
Строка 1: | Строка 1: | ||
==Определение натуральных чисел== | ==Определение натуральных чисел== | ||
− | === | + | ''Oсновная статья:'' [[Натуральные числа | Натуральные числа]] |
+ | ===Неформальное определение=== | ||
{{Определение | {{Определение | ||
Строка 15: | Строка 16: | ||
Множество всех натуральных чисел принято обозначать знаком <tex>\mathbb{N}</tex>. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число. | Множество всех натуральных чисел принято обозначать знаком <tex>\mathbb{N}</tex>. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число. | ||
− | === | + | ===Формальное определение=== |
− | + | Определить множество натуральных чисел позволяют '''аксиомы Пеано''' (англ. ''Peano axioms''): | |
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Строка 22: | Строка 23: | ||
# <tex>1\in\mathbb{N}</tex> (<tex>1</tex> является натуральным числом); | # <tex>1\in\mathbb{N}</tex> (<tex>1</tex> является натуральным числом); | ||
# Если <tex>x\in\mathbb{N}</tex>, то <tex>S(x)\in\mathbb{N}</tex> (Число, следующее за натуральным, также является натуральным); | # Если <tex>x\in\mathbb{N}</tex>, то <tex>S(x)\in\mathbb{N}</tex> (Число, следующее за натуральным, также является натуральным); | ||
− | # <tex>\nexists x\in\mathbb{N}\ (S(x) = 1)</tex> ( | + | # <tex>\nexists x\in\mathbb{N}\ (S(x) = 1)</tex> (<tex>1</tex> не следует ни за каким натуральным числом); |
# Если <tex>S(b)=a</tex> и <tex>S(c)=a</tex>, тогда <tex>b=c</tex> (если натуральное число <tex>a</tex> непосредственно следует как за числом <tex>b</tex>, так и за числом <tex>c</tex>, то <tex>b=c</tex>); | # Если <tex>S(b)=a</tex> и <tex>S(c)=a</tex>, тогда <tex>b=c</tex> (если натуральное число <tex>a</tex> непосредственно следует как за числом <tex>b</tex>, так и за числом <tex>c</tex>, то <tex>b=c</tex>); | ||
# '''Аксиома индукции'''. Пусть <tex>P(n)</tex> — некоторый одноместный предикат, зависящий от параметра — натурального числа <tex>n</tex>. Тогда: | # '''Аксиома индукции'''. Пусть <tex>P(n)</tex> — некоторый одноместный предикат, зависящий от параметра — натурального числа <tex>n</tex>. Тогда: | ||
Строка 44: | Строка 45: | ||
* <tex>3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}</tex> | * <tex>3=\Big\{\varnothing,\;\left\{\varnothing\right\},\;\big\{\varnothing,\;\left\{\varnothing\right\}\big\}\Big\}</tex> | ||
− | Классы эквивалентности этих множеств относительно биекций также обозначают 0, 1, 2, | + | Классы эквивалентности этих множеств относительно биекций также обозначают <tex>0, 1, 2, \dots.</tex> |
Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде». | Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде». | ||
Строка 54: | Строка 55: | ||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | Множество '''целых чисел''' (англ. ''integers'') <tex>\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}</tex> определяется как замыкание множества натуральных чисел <tex>\mathbb{N}</tex> относительно арифметических операций сложения (+) и вычитания (-). | + | Множество '''целых чисел''' (англ. ''integers'') <tex>\mathbb{Z}=\{\dots,-2,-1,0,1,2,\dots\}\,</tex> определяется как замыкание множества натуральных чисел <tex>\mathbb{N}</tex> относительно арифметических операций сложения <tex>(+)</tex> и вычитания <tex>(-)</tex>. |
}} | }} | ||
− | Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из натуральных чисел <tex>(1, 2, 3)</tex>, чисел вида '''-n''' (<tex>n\in\mathbb{N}</tex>) и числа | + | Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из натуральных чисел <tex>(1, 2, 3)</tex>, чисел вида '''-n''' (<tex>n\in\mathbb{N}</tex>) и числа ноль. |
Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения. | Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения. | ||
Строка 76: | Строка 77: | ||
===Определение вещественных чисел=== | ===Определение вещественных чисел=== | ||
− | + | ''Oсновная статья:'' [[Вещественные числа | Вещественные числа]] | |
+ | {{Определение | ||
+ | |definition= | ||
'''Веще́ственное число''' (англ. ''real number'') — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений. | '''Веще́ственное число''' (англ. ''real number'') — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений. | ||
+ | }} | ||
С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле. | С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле. | ||
Строка 92: | Строка 96: | ||
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени <tex>n</tex> с комплексными коэффициентами имеет ровно <tex>n</tex> комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях. | Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени <tex>n</tex> с комплексными коэффициентами имеет ровно <tex>n</tex> комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях. | ||
− | |||
− | == | + | == См. также == |
− | + | *[[Натуральные числа | Натуральные числа]] | |
− | | | + | *[[Вещественные числа | Вещественные числа]] |
− | + | *[[Простые числа | Простые числа]] | |
− | + | *[[Основная теорема арифметики | Основная теорема арифметики]] | |
− | |||
− | * | ||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | | | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Источники информации == | == Источники информации == | ||
Строка 154: | Строка 108: | ||
* [https://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D0%B8%D0%BE%D0%BC%D1%8B_%D0%9F%D0%B5%D0%B0%D0%BD%D0%BE/ Аксиомы Пеано] | * [https://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%81%D0%B8%D0%BE%D0%BC%D1%8B_%D0%9F%D0%B5%D0%B0%D0%BD%D0%BE/ Аксиомы Пеано] | ||
− | + | [[Категория: Теория чисел]] | |
− | + | [[Категория: Классы чисел]] | |
− | |||
− | |||
− |
Текущая версия на 19:03, 4 сентября 2022
Определение натуральных чисел
Oсновная статья: Натуральные числа
Неформальное определение
Определение: |
Натура́льные чи́сла (англ. natural numbers, естественные числа) — числа, возникающие естественным образом при счёте (как в смысле перечисления, так и в смысле исчисления). |
Существуют два подхода к определению натуральных чисел — числа, используемые при:
- перечислении (нумеровании) предметов (первый, второй, третий…) — подход, общепринятый в большинстве стран мира (в том числе и в России);
- обозначении количества предметов (нет предметов, один предмет, два предмета…). Принят в трудах Николя Бурбаки, где натуральные числа определяются как мощность конечных множеств.
Отрицательные и нецелые числа натуральными числами не являются.
Множество всех натуральных чисел принято обозначать знаком
. Множество натуральных чисел является бесконечным, так как для любого натурального числа найдётся большее его натуральное число.Формальное определение
Определить множество натуральных чисел позволяют аксиомы Пеано (англ. Peano axioms):
Определение: |
Множество
| будем называть множеством натуральных чисел, если зафиксирован некоторый элемент (единица) и функция (функция следования) так, что выполнены следующие условия
Теоретико-множественное определение
Согласно теории множеств, единственным объектом конструирования любых математических систем является множество.
Таким образом, и натуральные числа вводятся, исходя из понятия множества, по двум правилам:
Числа, заданные таким образом, называются ординальными.
Первые несколько ординальных чисел и соответствующие им натуральные числа:
Классы эквивалентности этих множеств относительно биекций также обозначают
Перечисленные аксиомы отражают наше интуитивные представления о «натуральном ряде».
Определение целых, рациональных, вещественных и комплексных чисел
Определение целых чисел
Определение: |
Множество целых чисел (англ. integers) | определяется как замыкание множества натуральных чисел относительно арифметических операций сложения и вычитания .
Таким образом, сумма, разность и произведение двух целых чисел есть снова целые числа. Оно состоит из натуральных чисел
, чисел вида -n ( ) и числа ноль.Необходимость рассмотрения целых чисел продиктована невозможностью (в общем случае) вычесть из одного натурального числа другое. Целые числа являются кольцом относительно операций сложения и умножения.
Отрицательные числа ввели в математический обиход Михаэль Штифель (1487—1567) в книге «Полная арифметика» (1544), и Никола Шюке (1445—1500).
Определение рациональных чисел
Определение: |
Множество рациональных чисел (англ. rational numbers) обозначается | и может быть записано в виде:
Нужно понимать, что численно равные дроби такие как, например, взаимно простыми целым числителем и натуральным знаменателем:
и , входят в это множество как одно число. Поскольку делением числителя и знаменателя дроби на их наибольший общий делитель можно получить единственное несократимое представление рационального числа, то можно говорить об их множестве как о множестве несократимых дробей соЗдесь
— наибольший общий делитель чисел и .Множество рациональных чисел является естественным обобщением множества целых чисел. Легко видеть, что если у рационального числа
знаменатель , то является целым числом. В этой связи возникают некоторые обманчивые предположения. Однако, хотя кажется, что рациональных чисел больше чем целых, и тех и других счётное число (то есть оба они могут быть перенумерованы натуральными числами, причём явно).Определение вещественных чисел
Oсновная статья: Вещественные числа
Определение: |
Веще́ственное число (англ. real number) — математическая абстракция, возникшая из потребности измерения геометрических и физических величин окружающего мира, а также проведения таких операций как извлечение корня, вычисление логарифмов, решение алгебраических уравнений. |
С точки зрения современной математики, множество вещественных чисел — суть, непрерывное упорядоченное поле. Это определение, или эквивалентная система аксиом, в точности определяет понятие вещественного числа в том смысле, что существует только одно, с точностью до изоморфизма, непрерывное упорядоченное поле.
Множество вещественных чисел имеет стандартное обозначение — R (полужирное «R»), или
(blackboard bold «R») от realis — действительный.Определение комплексных чисел
Определение: |
Ко́мпле́ксные чи́сла (англ. complex number) — расширение множества вещественных чисел, обычно обозначается | . Любое комплексное число может быть представлено как формальная сумма , где и — вещественные числа, — мнимая единица (одно из решений уравнения ).
Комплексные числа образуют алгебраически замкнутое поле — это означает, что многочлен степени
с комплексными коэффициентами имеет ровно комплексных корней, то есть верна основная теорема алгебры. Это одна из основных причин широкого применения комплексных чисел в математических исследованиях.