Асимптотика гипергеометрических последовательностей — различия между версиями
Iksiygrik (обсуждение | вклад) м |
м (rollbackEdits.php mass rollback) |
||
(не показано 45 промежуточных версий 2 участников) | |||
Строка 1: | Строка 1: | ||
{{Определение | {{Определение | ||
|id=def1. | |id=def1. | ||
− | |definition= | + | |definition= |
− | + | Последовательность, в которой отношение двух соседних членов равно отношению многочленов <tex>A(n)</tex> степени <tex>k</tex>, где <tex>k > 0</tex> и <tex>n</tex> - порядковый номер члена последовательности, называется '''гипергеометрической''' (англ. ''hypergeometric sequence''). | |
}} | }} | ||
Строка 9: | Строка 9: | ||
|id=lemma1. | |id=lemma1. | ||
|statement= | |statement= | ||
− | Пусть последовательность <tex>a_0, a_1, \ | + | Пусть последовательность <tex>a_0, a_1, \ldots</tex> положительных чисел такова, что <tex>\cfrac{a_{n+1}}{a_n}=A\cfrac{n^k + \alpha_1 \cdot n^{k-1} + \ldots + \alpha_k}{n^k+ \beta_1 \cdot n^{k-1}+ \ldots +\beta_k}</tex> для всех достаточно больших <tex>n</tex>, причем <tex>\alpha_1 \ne \beta_1</tex>. Тогда <tex>a_n</tex> растет как <tex>a_n \sim c \cdot A^n \cdot n^{\alpha_1-\beta_1}</tex> для некоторой постоянной <tex>c>0</tex>. |
+ | <br> | ||
+ | '''Замечание:''' Предположения леммы не позволяют определить величину константы <tex>c</tex>. Действительно, умножив последовательность <tex>a_n</tex> на произвольную постоянную <tex>d > 0</tex>, мы получим новую последовательность с тем же отношением последовательных членов, константа <tex>c</tex> для которой увеличивается в <tex>d</tex> раз. | ||
+ | |||
|proof= | |proof= | ||
− | + | Рассмотрим предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n \cdot n^{\alpha_1-\beta_1}}}</tex>. При <tex>a_n \sim c \cdot A^n \cdot n^{\alpha_1-\beta_1}</tex> для некоторого <tex>c</tex> данный предел будет существовать и равен <tex>c</tex>. С другой стороны, из определения существования предела<ref>[https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D0%B5%D0%B4%D0%B5%D0%BB_%D1%87%D0%B8%D1%81%D0%BB%D0%BE%D0%B2%D0%BE%D0%B9_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D0%B8 Предел числовой последовательности]</ref> на бесконечности следует, что он равен некоторому <tex>c</tex>, то есть <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n \cdot n^{\alpha_1-\beta_1}}} = c</tex>. Из чего можно сделать вывод, что утверждение леммы эквивалентно тому, что существует предел <tex>\lim\limits_{n \to \infty} {\cfrac{a_n}{A^n \cdot n^{\alpha_1-\beta_1}}}</tex>. <br> Прологарифмировав, мы приходим к необходимости доказать существование предела <tex>\lim\limits_{n \to \infty} {( \ln {a_n} - n \cdot \ln A - (\alpha_1 - \beta_1) \cdot \ln n )}</tex>. | |
− | Для доказательства существования предела применим критерий Коши, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. | + | Для доказательства существования предела применим критерий Коши<ref>[http://nuclphys.sinp.msu.ru/mathan/p1/m0509.html Критерий Коши]</ref>, т. е. будем доказывать, что рассматриваемая последовательность фундаментальна<ref>[https://ru.wikipedia.org/wiki/%D0%A4%D1%83%D0%BD%D0%B4%D0%B0%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D0%BB%D1%8C%D0%BD%D0%B0%D1%8F_%D0%BF%D0%BE%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D1%81%D1%82%D1%8C Фундаментальная последовательность]</ref>. |
− | <tex> | + | Перепишем отношение <tex>\cfrac{a_{n+1}}{a_n}</tex> в виде |
− | + | <tex>\cfrac{a_{n+1}}{a_n}=A \cdot \cfrac{1 + \alpha_1 \cdot n^{-1} + \ldots + \alpha_k \cdot n^{-k}}{1 + \beta_1 \cdot n^{-1} + \ldots + \beta_k \cdot n^{-k}}=A \cdot f\left(\cfrac{1}{n}\right)</tex>, | |
− | + | где | |
− | + | <tex>f(x)=\cfrac{1 + \alpha_1 \cdot x + \ldots + \alpha_k \cdot x^k}{1 + \beta_1 \cdot x + \ldots + \beta_k \cdot x^k}</tex> | |
− | <tex>\ | + | Прологарифмировав отношение <tex>\cfrac{a_{n+1}}{a_n}</tex>, получаем |
− | + | <tex>\ln a_{n+1} - \ln a_n = \ln A + \ln f\left(\cfrac{1}{n}\right)</tex>. | |
+ | |||
+ | Посмотрим на функцию <tex>\ln f(x)</tex>. Выпишем начальные члены разложения функции <tex>f</tex> в ряд в точке <tex>0</tex>: | ||
− | <tex>f(x)= | + | <tex>f(x)=1 + (\alpha_1 - \beta_1) \cdot x + \gamma \cdot x^2 + \ldots </tex> для некоторой константы <tex>\gamma</tex>. Это разложение - самый существенный элемент доказательства. Именно коэффициент <tex>\alpha_1 - \beta_1</tex>(отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя <tex>n^{\alpha_1-\beta_1}</tex> в асимптотике. Для логарифма функции <tex>f</tex> имеем |
− | + | <tex>\ln f(x)=(\alpha_1-\beta_1) \cdot x+\tilde{\gamma} \cdot x^2 + \ldots</tex> | |
− | <tex>\ln | + | Поэтому для некоторой постоянной <tex>C</tex> при достаточно маленьком <tex>x</tex> имеем <tex>|\ln f(x) - (\alpha_1 - \beta_1) \cdot x|<C \cdot x^2</tex>. В частности, если <tex>N</tex> достаточно велико, то <tex>∀ n>N</tex> получаем систему <tex>(*)</tex> |
− | + | <tex> | |
+ | \begin{equation*} | ||
+ | \begin{cases} | ||
+ | \left| \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n} \right| < C \cdot \cfrac{1}{n^2}, \\ | ||
− | + | \left| \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+1} \right| < C \cdot \cfrac{1}{(n+1)^2}, \\ | |
− | + | \ldots \\ | |
− | + | \left| \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+m} \right| < C \cdot \cfrac{1}{(n+m)^2}. \\ | |
+ | \end{cases} | ||
+ | \end{equation*} | ||
+ | </tex> | ||
− | <tex>|\ln a_{n+ | + | Теперь интересующее нас выражение в левой части неравенства <tex>|\ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot \ln {(n + m)} + (\alpha_1 - \beta_1) \cdot \ln n| < ε </tex> можно оценить с помощью системы <tex>(*)</tex> и неравенства треугольника<ref>[https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0 Неравенство треугольника]</ref>: |
− | <tex>|\ln a_{n+ | + | <tex>\left| \ln a_{n+m} - \ln a_n - m \cdot \ln A - (\alpha_1 - \beta_1) \cdot ( \ln {(n+m)} - \ln n) \right| =</tex> |
− | <tex> | + | <tex>= | \ln a_{n+m} - \ln a_{n + m - 1} + \ln a_{n + m - 1} - \ldots + \ln a_{n + 1} - \ln a_n - m \cdot \ln A - </tex> |
− | <tex> | + | <tex> - (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} + (\alpha_1 - \beta_1) \cdot \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - (\alpha_1 - \beta_1) \cdot (\ln {(n+m)} - \ln n) \Bigg| \leqslant</tex> |
− | + | <tex>\leqslant \left| \ln a_{n+1} - \ln a_n - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n} \right| + \left| \ln a_{n+2} - \ln a_{n+1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+1} \right| +</tex> | |
− | <tex> | + | <tex>\ldots</tex> |
− | <tex> | + | <tex>+ \left| \ln a_{n+m} - \ln a_{n+m-1} - \ln A - (\alpha_1 - \beta_1) \cdot \cfrac{1}{n+m} \right| + \left| \alpha_1 - \beta_1 \right| \cdot \left| \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n \right| \leqslant</tex> |
− | <tex> | + | <tex>\leqslant C \cdot \left(\cfrac{1}{n^2} + \cfrac{1}{(n+1)^2} + \ldots + \cfrac{1}{(n+m-1)^2}\right) + \left| \alpha_1 - \beta_1 \right| \cdot \left| \sum\limits_{k=0}^{m-1} \cfrac{1}{n+k} - \ln {(n+m)} + \ln n \right|</tex>. |
− | <tex>\ | + | Поскольку ряд <tex>\sum\limits_{k=1}^{\infty} \cfrac{1}{k^2}</tex> сходится, первое слагаемое в правой части последнего неравенства при больших <tex>n</tex> можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции <tex>\cfrac{1}{[x]}</tex> на отрезке <tex>[n, n+m]</tex>, |
− | + | [[Файл:InkedOiGdtVITsP10_LI.jpg|350px|thumb|right|График функции <tex>y = \cfrac{1}{[x]}</tex> на отрезке <tex>[n, n + m]</tex>]] | |
− | |||
− | + | (Здесь через <tex>[x]</tex> обозначена целая часть числа <tex>x</tex>, наибольшее целое число, не превосходящее <tex>x</tex>.) Эта площадь больше, чем площадь под графиком функции <tex>y = \cfrac{1}{x}</tex>, но меньше, чем площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> на этом же отрезке. Площадь под графиком функции <tex>\cfrac {1}{x}</tex> равна <tex>\ln {(n + m)} - \ln {n}</tex>, площадь под графиком функции <tex>y = \cfrac{1}{x-1}</tex> равна <tex>\ln {(n+m-1)} - \ln {(n-1)}</tex>. Таким образом, интересующая нас разность не превосходит <tex>\left| (\ln {(n+m-1)} - \ln {(n-1)}) - \left( \ln {(n+m)} - \ln n \right) \right| =</tex> | |
− | + | <tex>= \left| \ln {\cfrac {n+m-1}{n+m} - \ln {\cfrac {n-1}{n}}} \right| = </tex> | |
+ | <tex>= \left| \ln {\left(1 - \cfrac{1}{n+m}\right)} - \ln {\left(1 - \cfrac{1}{n}\right)} \right| <</tex> | ||
− | + | <tex>< \left| \ln {\left(1 - \cfrac{1}{n}\right)} \right| < C \cdot \cfrac{1}{n}</tex>. | |
}} | }} | ||
− | ''' | + | == Примеры == |
+ | '''Пример.''' Рассмотрим производящую функцию для [[Числа Каталана|чисел Каталана]] | ||
+ | |||
+ | <tex>A(s) = 1 + s + 2 \cdot s^2 + 5 \cdot s^3 + \ldots </tex> | ||
+ | |||
+ | Возведя ее в квадрат и умножив результат на s, получим | ||
+ | |||
+ | <tex>s \cdot A^2(s) = s + 2 \cdot s^2 + 5 \cdot s^3 + 14 \cdot s^4 + \ldots = A(s) - 1</tex>, | ||
+ | |||
+ | что дает нам квадратное уравнение на производящую функцию | ||
+ | |||
+ | <tex>s \cdot A^2(s) - A(s) + 1 = 0,</tex> | ||
+ | |||
+ | откуда | ||
+ | |||
+ | <tex>A(s) = \cfrac {1 - \sqrt {1 - 4 \cdot s}}{2 \cdot s}</tex> | ||
+ | |||
+ | Второй корень уравнения отбрасывается, так как <tex>\cfrac {1 + \sqrt {1 - 4 \cdot s}}{2 \cdot s} = \cfrac {1}{s} + \ldots</tex> содержит отрицательные степени <tex>s</tex> | ||
+ | |||
+ | Найденная производящая функция позволяет найти явную форму для [[Числа Каталана|чисел Каталана]]. Согласно биному Ньютона <ref>[https://ru.wikipedia.org/wiki/%D0%91%D0%B8%D0%BD%D0%BE%D0%BC_%D0%9D%D1%8C%D1%8E%D1%82%D0%BE%D0%BD%D0%B0 Бином Ньютона]</ref> | ||
− | == | + | <tex>a_n = \cfrac {\cfrac {1}{2} \cdot \cfrac {1}{2} \cdot \cfrac {3}{2} \cdot \ldots \cdot \cfrac {2 \cdot n - 1}{2} \cdot 4^{n + 1}}{2 \cdot (n + 1)!},</tex> |
− | + | ||
+ | откуда, умножая на числитель и знаменатель на <tex>n!</tex> и сокращая на <tex>2^{n + 1}</tex>, получаем | ||
+ | |||
+ | <tex>a_n = \cfrac {(2 \cdot n)!}{n! \cdot (n + 1)!} = \cfrac {1}{n + 1} \cdot \dbinom {2 \cdot n}{n}</tex> | ||
+ | |||
+ | Последняя формула дает и более простое рекурсивное соотношение для [[Числа Каталана|чисел Каталана]]: | ||
− | <tex>\ | + | <tex>\cfrac{c_{n+1}}{c_n}=\cfrac{4 \cdot n + 2}{n+2}=4 \cdot \cfrac{ n + \cfrac{1}{2}}{n+2}</tex> |
− | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\ | + | Поэтому <tex>c_n \sim c \cdot 4^n \cdot n^{-\dfrac{3}{2}}</tex> для некоторой постоянной <tex>c</tex>. |
'''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | '''Пример.''' Найдем асимптотику коэффициентов для функции <tex>(a-s)^{\alpha}</tex>, где <tex>\alpha</tex> вещественно. В ряде случаев эта асимптотика нам | ||
уже известна, например, при <tex>\alpha=−1</tex>. Согласно определению функции <tex>(1-s)^{\alpha}</tex> имеем | уже известна, например, при <tex>\alpha=−1</tex>. Согласно определению функции <tex>(1-s)^{\alpha}</tex> имеем | ||
− | <tex>(a-s)^{\alpha}=a^{\alpha}(1-\ | + | <tex>(a-s)^{\alpha}=a^{\alpha} \cdot \left(1-\cfrac{s}{a}\right)^{\alpha}=a^{\alpha} \cdot \left(1 - \cfrac{\alpha}{1!} \cdot \cfrac{s}{a} + \cfrac{\alpha \cdot (\alpha-1)}{2!} \cdot {\left(\cfrac{s}{a}\right)^2} - \cfrac{\alpha \cdot (\alpha-1) \cdot (\alpha-2)}{3!} \cdot \left(\cfrac{s}{a}\right)^3 + \ldots \right)</tex> |
− | Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае начиная с некоторого номера все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при <tex>a_n=(-1)^n \ | + | Если <tex>\alpha</tex> — целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае, начиная с некоторого номера, все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при <tex>a_n=(-1)^n \cdot \cfrac{\alpha \cdot (\alpha-1) \cdot \ldots \cdot (\alpha-n+1)}{n! \cdot {\alpha}^n}:</tex> |
− | <tex>\ | + | <tex>\cfrac{a_{n+1}}{a_n}=\cfrac{1}{a} \cdot \cfrac{n-\alpha}{n+1}</tex> |
− | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1- | + | Поэтому <tex>a_n \sim c \cdot a^{-n} \cdot n^{-\alpha-1}</tex>. Например, коэффициенты функции <tex>-(1-4 \cdot s)^{\dfrac{1}{2}}</tex> ведут себя как <tex>c \cdot 4^n \cdot n^{-\dfrac{3}{2}}</tex>, и мы получаем повторный вывод ассимптотики для [[Числа Каталана|чисел Каталана]]. |
== См. также == | == См. также == | ||
* [[Производящая функция]] | * [[Производящая функция]] | ||
+ | * [[Числа Каталана]] | ||
==Примечания== | ==Примечания== |
Текущая версия на 19:17, 4 сентября 2022
Определение: |
Последовательность, в которой отношение двух соседних членов равно отношению многочленов | степени , где и - порядковый номер члена последовательности, называется гипергеометрической (англ. hypergeometric sequence).
Вычисление асимптотики
Лемма: |
Пусть последовательность положительных чисел такова, что для всех достаточно больших , причем . Тогда растет как для некоторой постоянной .
|
Доказательство: |
Рассмотрим предел [1] на бесконечности следует, что он равен некоторому , то есть . Из чего можно сделать вывод, что утверждение леммы эквивалентно тому, что существует предел . Для доказательства существования предела применим критерий Коши[2], т. е. будем доказывать, что рассматриваемая последовательность фундаментальна[3]. Перепишем отношение в виде, где
Прологарифмировав отношение , получаем. Посмотрим на функцию . Выпишем начальные члены разложения функции в ряд в точке :для некоторой константы . Это разложение - самый существенный элемент доказательства. Именно коэффициент (отличный от нуля по предположению леммы) при линейном члене указывает на присутствие сомножителя в асимптотике. Для логарифма функции имеем
Поэтому для некоторой постоянной при достаточно маленьком имеем . В частности, если достаточно велико, то получаем систему
Теперь интересующее нас выражение в левой части неравенства [4]: можно оценить с помощью системы и неравенства треугольника
. Поскольку ряд сходится, первое слагаемое в правой части последнего неравенства при больших можно сделать сколь угодно малым. Чтобы оценить второе слагаемое, заметим, что стоящая в нем сумма представляет собой площадь под графиком ступенчатой функции на отрезке ,
. |
Примеры
Пример. Рассмотрим производящую функцию для чисел Каталана
Возведя ее в квадрат и умножив результат на s, получим
,
что дает нам квадратное уравнение на производящую функцию
откуда
Второй корень уравнения отбрасывается, так как
содержит отрицательные степениНайденная производящая функция позволяет найти явную форму для чисел Каталана. Согласно биному Ньютона [5]
откуда, умножая на числитель и знаменатель на
и сокращая на , получаем
Последняя формула дает и более простое рекурсивное соотношение для чисел Каталана:
Поэтому
для некоторой постоянной .Пример. Найдем асимптотику коэффициентов для функции
, где вещественно. В ряде случаев эта асимптотика нам уже известна, например, при . Согласно определению функции имеем
Если
— целое неотрицательное число, то ряд обрывается и вопроса об асимптотике не возникает. В противном случае, начиная с некоторого номера, все коэффициенты ряда имеют одинаковый знак. Для определения асимптотики мы можем воспользоваться леммой при
Поэтому чисел Каталана.
. Например, коэффициенты функции ведут себя как , и мы получаем повторный вывод ассимптотики для