Левосторонние красно-чёрные деревья — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Псевдокод)
м (rollbackEdits.php mass rollback)
 
(не показано 17 промежуточных версий 3 участников)
Строка 4: Строка 4:
  
 
==Свойства==
 
==Свойства==
*Корневой узел всегда ЧЕРНЫЙ в цвете.
+
*Корневой узел всегда черный.
 
*Каждый новый узел всегда окрашен в красный цвет.
 
*Каждый новый узел всегда окрашен в красный цвет.
*Каждый дочерний узел листа дерева считается черным.
+
*Каждый дочерний нулевой узел листа дерева считается черным.
 +
 
 
==Вращения==
 
==Вращения==
 
Чтобы поддерживать левосторонние красно-черные двоичные деревья поиска необходимо соблюдать следующие инварианты при вставке и удалении:
 
Чтобы поддерживать левосторонние красно-черные двоичные деревья поиска необходимо соблюдать следующие инварианты при вставке и удалении:
Строка 12: Строка 13:
 
* Количество черных узлов на каждом таком пути одинаково.
 
* Количество черных узлов на каждом таком пути одинаково.
  
Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращением вправо и вращением влево.Первая операция трансформируют <tex>3</tex>-узел, левый потомок которого окрашен в красный, в  <tex>3</tex>-узел, правый потомок которого окрашен в красный,вторая операция {{---}} наоборот.  Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.
+
Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращением вправо и вращением влево. Первая операция трансформируют <tex>3</tex>-узел (совокупность из <tex>3</tex> узлов, где <tex>2</tex> узла являются наследниками третьего, причем одна из связей является красной), левый потомок которого окрашен в красный, в  <tex>3</tex>-узел, правый потомок которого окрашен в красный,вторая операция {{---}} наоборот.  Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.
 
===Псевдокод===
 
===Псевдокод===
 
[[File:rotateRight.png|310px|thumb|upright|Rotate Right]]
 
[[File:rotateRight.png|310px|thumb|upright|Rotate Right]]
Строка 30: Строка 31:
 
       h.color = RED
 
       h.color = RED
 
       '''return''' x
 
       '''return''' x
 +
 
==Переворот цветов==
 
==Переворот цветов==
 
В красно-черных деревьях используется такая  операция как '''переворот цветов''' , которая инвертирует цвет узла и двух его детей.  Она не изменяет количество черных узлов  на любом пути от корня до листа, но может привести к появлению двух последовательных красных узлов.
 
В красно-черных деревьях используется такая  операция как '''переворот цветов''' , которая инвертирует цвет узла и двух его детей.  Она не изменяет количество черных узлов  на любом пути от корня до листа, но может привести к появлению двух последовательных красных узлов.
Строка 83: Строка 85:
 
           '''if''' isRed(h.left) '''&&''' isRed(h.left.left)
 
           '''if''' isRed(h.left) '''&&''' isRed(h.left.left)
 
               h = rotateRight(h)
 
               h = rotateRight(h)
       '''return''' ''h''
+
       '''return''' h
  
 
==Поиск==
 
==Поиск==
Строка 115: Строка 117:
 
       '''if''' isRed(h.left) '''&&''' isRed(h.right)
 
       '''if''' isRed(h.left) '''&&''' isRed(h.right)
 
           colorFlip(h)   
 
           colorFlip(h)   
       '''return''' ''h''
+
       '''return''' h
  
===Удаление максимума===
+
==Удаление максимума==
 
* Спускаемся вниз по правому краю  дерева.
 
* Спускаемся вниз по правому краю  дерева.
 
* Если поиск заканчивается на узле с <tex>4</tex>-мя или <tex>5</tex>-ю потомками, просто удаляем узел.
 
* Если поиск заканчивается на узле с <tex>4</tex>-мя или <tex>5</tex>-ю потомками, просто удаляем узел.
Строка 145: Строка 147:
 
         h = rotateLeft(h)                   
 
         h = rotateLeft(h)                   
 
         colorFlip(h)                           
 
         colorFlip(h)                           
     '''return''' ''h''                                             
+
     '''return''' h                                          
  
 
  '''Node''' deleteMax(h : '''Node''')
 
  '''Node''' deleteMax(h : '''Node''')
Строка 171: Строка 173:
 
  '''Node''' moveRedLeft(h : '''Node''')
 
  '''Node''' moveRedLeft(h : '''Node''')
 
     colorFlip(h)
 
     colorFlip(h)
     if (isRed(h.right.left))
+
     if isRed(h.right.left)
 
         h.right = rotateRight(h.right)
 
         h.right = rotateRight(h.right)
 
         h = rotateLeft(h)
 
         h = rotateLeft(h)
 
         colorFlip(h)
 
         colorFlip(h)
     '''return''' ''h''
+
     '''return''' h
  
 
  '''void''' deleteMin()
 
  '''void''' deleteMin()
Строка 183: Строка 185:
 
  '''Node''' deleteMin(h : '''Node''')
 
  '''Node''' deleteMin(h : '''Node''')
 
     <span style="color:#008000">// удаляем узел на нижнем уровне(h должен быть красным по инварианту)</span>
 
     <span style="color:#008000">// удаляем узел на нижнем уровне(h должен быть красным по инварианту)</span>
     if (h.left == ''null'')   
+
     if h.left == ''null''  
 
         '''return''' ''null''
 
         '''return''' ''null''
 
       <span style="color:#008000">// Если необходимо, пропушим  красную ссылку вниз</span>
 
       <span style="color:#008000">// Если необходимо, пропушим  красную ссылку вниз</span>

Текущая версия на 19:08, 4 сентября 2022

Определение:
Левостороннее красно-черное дерево — тип сбалансированного двоичного дерева поиска, гарантирующий такую же асимптотическую сложность операций, как у красно-черного дерева поиска.


Свойства

  • Корневой узел всегда черный.
  • Каждый новый узел всегда окрашен в красный цвет.
  • Каждый дочерний нулевой узел листа дерева считается черным.

Вращения

Чтобы поддерживать левосторонние красно-черные двоичные деревья поиска необходимо соблюдать следующие инварианты при вставке и удалении:

  • Ни один путь от корня до листьев дерева не содержит двух последовательных красных узлов.
  • Количество черных узлов на каждом таком пути одинаково.

Основные операции, используемые алгоритмами сбалансированного дерева для поддержания баланса при вставке и удалении, называются вращением вправо и вращением влево. Первая операция трансформируют [math]3[/math]-узел (совокупность из [math]3[/math] узлов, где [math]2[/math] узла являются наследниками третьего, причем одна из связей является красной), левый потомок которого окрашен в красный, в [math]3[/math]-узел, правый потомок которого окрашен в красный,вторая операция — наоборот. Вращения сохраняют два указанных выше инварианта, не изменяют поддеревья узла.

Псевдокод

Rotate Right
  Node rotateRight(h : Node) 
      x = h.left
      h.left = x.right
      x.right = h
      x.color = h.color
      h.color = RED
      return x
Rotate Left
  Node rotateLeft(h : Node) 
      x = h.right
      h.right = x.left
      x.left = h
      x.color = h.color
      h.color = RED
      return x

Переворот цветов

В красно-черных деревьях используется такая операция как переворот цветов , которая инвертирует цвет узла и двух его детей. Она не изменяет количество черных узлов на любом пути от корня до листа, но может привести к появлению двух последовательных красных узлов.

Псевдокод

Переворот цветов
 void flipColors(h : Node h) 
      h.color = ! h.color
      h.left.color = ! h.left.color
      h.right.color = ! h.right.color

Вставка

Вставка в ЛСКЧД базируется на [math]4[/math] простых операциях:

  • Вставка нового узла к листу дерева:

Если высота узла нулевая, возвращаем новый красный узел.

Вставка нового узла
  • Расщепление узла с [math]4[/math]-я потомками:

Если левый предок и правый предок красные, запускаем переворот цветов от текущего узла.

Расщепление узла
  • Принудительное вращение влево:
Принудительное вращение

Если правый предок красный, вращаем текущую вершину влево.

  • Балансировка узла с [math]4[/math]-я потомками:
Балансировка

Если левый предок красный и левый предок левого предка красный, то вращаем текущую вершину вправо.


Псевдокод

 void insert(key : Key, value : Value ) 
        root = insert(root, key, value)
        root.color = BLACK


 Node insert(h : Node, key : Key, value : Value)
      // Вставка нового листа
     if h == null     
         return new Node(key, value)
      // Расщепление узла с [math]4[/math]-я потомками
     if isRed(h.left) && isRed(h.right)
         colorFlip(h)
      // Стандартная вставка в дереве поиска
     if key = h.key 
         h.val = value
     else 
         if key < h.key  
             h.left = insert(h.left, key, value)  
         else 
             h.right = insert(h.right, key, value)
          // Принудительное вращение влево
         if isRed(h.right) && !isRed(h.left)
             h = rotateLeft(h)
          // Балансировка узла с [math]4[/math]-я потомками
         if isRed(h.left) && isRed(h.left.left)
             h = rotateRight(h)
     return h

Поиск

Поиск в левосторонних красно-черных деревьях эквивалентен поиску в наивной реализации дерева поиска. Для поиска элемента в красно-черных деревьях дереве поиска можно воспользоваться циклом,который проходит от корня до искомого элемента. Если же элемент отсутствует, цикл пройдет до листа дерева и прервется. Для каждого узла цикл сравнивает значение его ключа с искомым ключом. Если ключи одинаковы, то функция возвращает текущий узел, в противном случае цикл повторяет для левого или правого поддерева. Узлы, которые посещает функция образуют нисходящий путь от корня, так что время ее работы [math]O(h)[/math], где [math]h[/math] — высота дерева.

Псевдокод

Value search(key : Key)
    Node x = root
    while (x != null)
      if key = x.key
          return x.val
      else
          if key < x.key
              x = x.left
      else 
          if key > x.key 
              x = x.right
    return null

Исправление правых красных связей

  • Использование Переворота цветов и вращений сохраняет баланс черной связи.
  • После удаления необходимо исправить правые красные связи и устранить узлы с [math]4[/math]-я потомками
      // Исправление правых красных связей
  Node fixUp(h : Node)  
      if isRed(h.right)  
          h = rotateLeft(h)  
      // Вращение [math]2[/math]-ой красной пары пары
      if isRed(h.left) && isRed(h.left.left)
          h = rotateRight(h)  
      // Балансировка узла с [math]4[/math]-я потомками
      if isRed(h.left) && isRed(h.right)
          colorFlip(h)  
      return h

Удаление максимума

  • Спускаемся вниз по правому краю дерева.
  • Если поиск заканчивается на узле с [math]4[/math]-мя или [math]5[/math]-ю потомками, просто удаляем узел.
Узлы до и после удаления
  • Удаление узла с [math]2[/math]-я потомками нарушает баланс

Соответственно, спускаясь вниз по дереву необходимо поддерживать следующий инвариант : количество потомков узла не должно быть ровно [math]2[/math]-м.

ChangeNode.png

Будем поддерживать инвариант: для любого узла либо сам узел, либо правый предок узла красный. Будем придерживаться тактики , что удалять лист легче, чем внутренний узел.

Заметим, что если правый потомок вершины и правый потомок правого потомка вершины черные, необходимо переместить левую красную ссылку вправо для сохранения инварианта.

Перемещение красной ссылки. Простой случай
Перемещение красной ссылки. Сложный случай

Псевдокод

void deleteMax()              
    root = deleteMax(root)         
    root.color = BLACK               
Node moveRedLeft(h : Node)
    colorFlip(h)                     
    if isRed(h.right.left                
        h.right = rotateRight(h.right)       
        h = rotateLeft(h)                   
        colorFlip(h)                          
    return h                                           
Node deleteMax(h : Node)
    if isRed(h.left)                                         
    // вращаем все 3-вершины вправо
        h = rotateRight(h)
    // поддерживаем инвариант (h должен быть красным)
    if h.right == null
        return null
    // заимствуем у брата если необходимо
    if !isRed(h.right) && !isRed(h.right.left) 
        h = moveRedRight(h)
    // опускаемся на один уровень глубже 
    h.left = deleteMax(h.left) 
    // исправление правых красных ссылок и 4-вершин на пути вверх
    return fixUp(h)

Удаление минимума

Поддерживаем инвариант: вершина или левый ребенок вершины красный.

Заметим, что если левый потомок вершины и левый потомок левого потомка вершины черные, необходимо переместить красную ссылку для сохранения инварианта.

Перемещение красной ссылки. Простой случай
Перемещение красной ссылки. Сложный случай

Псевдокод

Node moveRedLeft(h : Node)
    colorFlip(h)
    if isRed(h.right.left)
        h.right = rotateRight(h.right)
        h = rotateLeft(h)
        colorFlip(h)
    return h
void deleteMin()
    root = deleteMin(root)
    root.color = BLACK
Node deleteMin(h : Node)
    // удаляем узел на нижнем уровне(h должен быть красным по инварианту)
    if h.left == null   
        return null
     // Если необходимо, пропушим  красную ссылку вниз
    if  (!isRed(h.left) &&  !isRed(h.left.left))
         h = moveRedLeft(h)
     // опускаемся на уровень ниже 
    h.left = deleteMin(h.left)
    return fixUp(h)

Асимптотика

Асимптотика методов в левосторонних красно-черных деревьях эквивалентна асимптотике базовой реализации красно-черных деревьях.

См.также

Источники информации

  • Robert Sedgewick "Left-leaning Red-Black Trees" ,Department of Computer Science, Princeton University