Группы. Действие группы на множестве — различия между версиями
Perveevm (обсуждение | вклад) (→Источники информации) |
м (rollbackEdits.php mass rollback) |
||
(не показаны 4 промежуточные версии 2 участников) | |||
Строка 37: | Строка 37: | ||
|definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' (англ. ''stabilizer'') элемента <tex>g \in G</tex> называется множество его неподвижных точек: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex> | |definition=Пусть группа <tex>G</tex> действует на множество <tex>X</tex>. Тогда '''стабилизатором''' (англ. ''stabilizer'') элемента <tex>g \in G</tex> называется множество его неподвижных точек: <tex>St(g) = \{x \in X \mid g \cdot x = x\}</tex> | ||
}} | }} | ||
+ | |||
+ | Далее приведены несколько несложных и полезных на практике утверждений. | ||
+ | |||
+ | {{Утверждение | ||
+ | |id=stab | ||
+ | |statement=<tex>Orb(x) \cap Orb(y) \neq \varnothing \Rightarrow Orb(x) = Orb(y)</tex> | ||
+ | |proof=<tex>Orb(x) \cap Orb(y) \neq \varnothing \Rightarrow \exists g_1, g_2 \in G : g_1 \cdot x = g_2 \cdot y \Rightarrow x = g_1^{-1} \cdot (g_2 \cdot y) = (g_1^{-1} \cdot g_2) \cdot y \Rightarrow x \in Orb(y)</tex> | ||
+ | |||
+ | Заметим, что <tex>\forall g \in G: g \cdot x \in Orb(y) \Rightarrow Orb(x) \subseteq Orb(y)</tex> | ||
+ | |||
+ | Аналогично доказывается, что <tex>Orb(y) \subseteq Orb(x)</tex> | ||
+ | |||
+ | Таким образом, <tex>Orb(x) = Orb(y)</tex> | ||
+ | }} | ||
+ | |||
{{Утверждение | {{Утверждение | ||
Строка 72: | Строка 87: | ||
* [https://en.wikipedia.org/wiki/Group_action Wikipedia | Group action] | * [https://en.wikipedia.org/wiki/Group_action Wikipedia | Group action] | ||
* [https://mipt.ru/diht/students/courses/group_theory.pdf Теория групп] | * [https://mipt.ru/diht/students/courses/group_theory.pdf Теория групп] | ||
+ | * [http://e-maxx.ru/algo/burnside_polya MAXimal::algo::Лемма Бернсайда. Теорема Пойа] | ||
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Комбинаторика]] | [[Категория: Комбинаторика]] | ||
[[Категория: Теория групп]] | [[Категория: Теория групп]] |
Текущая версия на 19:03, 4 сентября 2022
Определение: |
Группа действует на множестве (англ. acts on a set) , если задано отображение (обозначается ), такое что для любого , а также для любых оно обладает свойствами:
|
Содержание
Эквивалентность по группе
Определение: |
Пусть группа отношение эквивалентности для : , если . Тогда, если , то говорят, что и равны с точностью до группы. | действует на множестве . Введем на
Утверждение: |
Отношение является отношением эквивалентности. |
|
Орбита и стабилизатор
Определение: |
Пусть группа | действует на множество . Тогда орбитой (англ. orbit) элемента называется множество: . Множество всех орбит обозначается так: .
Иными словами, орбитой элемента множества Леммы Бёрнсайда.
в группе называется порожденный им класс эквивалентности по отношению . Задача подсчета количества классов эквивалентности является нетривиальной и решается в общем случае при помощи
Определение: |
Элемент | называется неподвижной точкой (англ. fixed point) элемента , если
Определение: |
Пусть группа | действует на множество . Тогда стабилизатором (англ. stabilizer) элемента называется множество его неподвижных точек:
Далее приведены несколько несложных и полезных на практике утверждений.
Утверждение: |
Заметим, что Аналогично доказывается, что Таким образом, |
Утверждение: |
Примеры
В качестве примера рассмотрим ожерелья, состоящие из
бусин, которые бывают красного и черного цвета. Таким образом, множество — это множество всевозможных ожерелий из бусин, окрашенных в один из двух цветов. Теперь введем группу , в которой будет элементов: , где будет означать поворот ожерелья на угол против часовой стрелки.Таким образом, правое ожерелье получено из левого путем действия на него элементом
. Из этого следуют, что левое и правое ожерелья равны с точностью до группы , а значит они находятся в одном классе эквивалентности.Теперь в качестве примера рассмотрим орбиту левого ожерелья — все элементы множества
, полученные из элемента путем поворотов на различных углов.