Матрица Кирхгофа — различия между версиями
(→Определение матрицы Кирхгофа) |
м (rollbackEdits.php mass rollback) |
||
(не показано 27 промежуточных версий 8 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
− | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
− | '''Матрицей Кирхгофа''' простого графа <tex>G = (V,E) </tex> называется матрица <tex> K (|V| \times |V|) = \parallel k_{i,j} \parallel </tex>, элементы которой определяются равенством: <tex> | + | '''Матрицей Кирхгофа''' [[Основные определения теории графов#def_simple_graph|простого графа]] <tex>G = (V,E) </tex> называется матрица <tex> K (|V| \times |V|) = \parallel k_{i,j} \parallel </tex>, элементы которой определяются равенством: <tex> |
k_{i,j} = | k_{i,j} = | ||
\begin{cases} | \begin{cases} | ||
\deg(v_i), \ i = j \\ | \deg(v_i), \ i = j \\ | ||
-1, \ (v_i,v_j) \in E \\ | -1, \ (v_i,v_j) \in E \\ | ||
− | 0, \mbox{ | + | 0, \mbox{ otherwise}. |
\end{cases} | \end{cases} | ||
</tex> | </tex> | ||
}} | }} | ||
− | Иными словами, на главной диагонали матрицы Кирхгофа находятся степени вершин, а на пересечении i-й строки и j-го столбца (<tex>i \ne j</tex>) стоит -1, если вершины с номерами i и j смежны, и 0 в противном случае. | + | Иными словами, на главной диагонали матрицы Кирхгофа находятся степени вершин, а на пересечении <tex>i</tex>-й строки и <tex>j</tex>-го столбца (<tex>i \ne j</tex>) стоит <tex>-1</tex>, если вершины с номерами <tex>i</tex> и <tex>j</tex> смежны, и <tex>0</tex> в противном случае. |
+ | |||
+ | == Пример матрицы Кирхгофа== | ||
+ | |||
+ | {|class="wikitable" | ||
+ | !Граф | ||
+ | !Матрица Кирхгофа | ||
+ | |- | ||
+ | |[[Файл:Kirhgof_matrix_1.png|200px]] | ||
+ | |<tex>\left(\begin{array}{rrrrrr} | ||
+ | 2 & -1 & 0 & 0 & -1 & 0\\ | ||
+ | -1 & 3 & -1 & 0 & -1 & 0\\ | ||
+ | 0 & -1 & 2 & -1 & 0 & 0\\ | ||
+ | 0 & 0 & -1 & 3 & -1 & -1\\ | ||
+ | -1 & -1 & 0 & -1 & 3 & 0\\ | ||
+ | 0 & 0 & 0 & -1 & 0 & 1\\ | ||
+ | \end{array}\right)</tex> | ||
+ | |} | ||
== Некоторые свойства == | == Некоторые свойства == | ||
− | + | {{Утверждение | |
+ | |statement=Сумма элементов каждой строки (столбца) матрицы Кирхгофа равна нулю: | ||
+ | : <tex>\ \sum_{i=1}^{|V|} k_{i,j} = 0</tex>. | ||
+ | }} | ||
− | 2 | + | {{Утверждение |
+ | |statement=Определитель матрицы Кирхгофа равен нулю: | ||
+ | : <tex>\det K=0</tex> | ||
+ | |proof=<tex> \det K = | ||
+ | \begin{vmatrix} | ||
+ | k_{1, 1} & k_{1, 2} & \cdots & k_{1, |V|} \\ | ||
+ | k_{2, 1} & k_{2, 2} & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} | ||
+ | \end{vmatrix} | ||
+ | </tex> | ||
− | <tex> K = | + | Прибавим к первой строке все остальные строки (это не изменит значение определителя): |
+ | |||
+ | <tex>\begin{vmatrix} | ||
+ | k_{1, 1} + k_{2, 1} + \cdots + k_{|V|, 1} & k_{1, 2} + k_{2, 2} + \cdots + k_{|V|, 2} & \cdots & k_{1, |V|} + k_{2, |V|} + \cdots + k_{|V|, |V|} \\ | ||
+ | k_{2, 1} & k_{2, 2} & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} | ||
+ | \end{vmatrix} | ||
+ | </tex> | ||
+ | |||
+ | Так как сумма элементов каждого столбца равна <tex>0</tex>, получим: | ||
+ | |||
+ | <tex>\det K = \begin{vmatrix} | ||
+ | 0 & 0 & \cdots & 0 \\ | ||
+ | k_{2, 1} & k_{2, 2} & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} | ||
+ | \end{vmatrix} = 0 | ||
+ | </tex> | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement=Матрица Кирхгофа простого графа симметрична: | ||
+ | : <tex>\ k_{i,j} = k_{j,i}\quad i,j=1, \ldots, |V|</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement=Связь с [[Матрица смежности графа|матрицей смежности]]: | ||
+ | :<tex> K = | ||
\begin{pmatrix} | \begin{pmatrix} | ||
− | deg(v_1) & 0 & \cdots & 0 \\ | + | \mathrm{deg}(v_1) & 0 & \cdots & 0 \\ |
− | 0 & deg(v_2) & \cdots & 0 \\ | + | 0 & \mathrm{deg}(v_2) & \cdots & 0 \\ |
\vdots & \vdots & \ddots & \vdots \\ | \vdots & \vdots & \ddots & \vdots \\ | ||
− | 0 & 0 & \cdots & deg(v_n) | + | 0 & 0 & \cdots & \mathrm{deg}(v_n) |
\end{pmatrix} - A, | \end{pmatrix} - A, | ||
</tex> | </tex> | ||
+ | где <tex>A</tex> — матрица смежности графа <tex>G</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement=[[Связь матрицы Кирхгофа и матрицы инцидентности|Связь с матрицей инцидентности]]: | ||
+ | :<tex> K = I \cdot I^T, </tex> где <tex>I</tex> — матрица инцидентности некоторой ориентации графа. | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement=<tex>0</tex> является [[Собственные векторы и собственные значения|собственным значением]] матрицы, кратность его равна числу [[Отношение связности, компоненты связности|компонент связности]] графа. | ||
+ | |proof=Собственным значением матрицы называют значения <tex>\lambda</tex>, которые удовлетворяют уравнению: | ||
+ | |||
+ | <tex>\begin{vmatrix} | ||
+ | k_{1, 1} - \lambda &k_{1, 2} & \cdots & k_{1, |V|} \\ | ||
+ | k_{2, 1} & k_{2, 2} - \lambda & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V| - \lambda} | ||
+ | \end{vmatrix} = 0 | ||
+ | </tex> | ||
+ | |||
+ | Прибавим к первой строке все остальные строки (это не изменит значение определителя): | ||
+ | |||
+ | <tex>\begin{vmatrix} | ||
+ | k_{1, 1} + k_{2, 1} + \cdots + k_{|V|, 1} - \lambda & k_{1, 2} + k_{2, 2} + \cdots + k_{|V|, 2} - \lambda & \cdots & k_{1, |V|} + k_{2, |V|} + \cdots + k_{|V|, |V|} - \lambda \\ | ||
+ | k_{2, 1} & k_{2, 2} - \lambda & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} - \lambda | ||
+ | \end{vmatrix} | ||
+ | </tex> | ||
+ | |||
+ | Так как сумма элементов каждого столбца равна <tex>0</tex>, получим: | ||
+ | |||
+ | <tex>\begin{vmatrix} | ||
+ | - \lambda &-\lambda & \cdots & - \lambda \\ | ||
+ | k_{2, 1} & k_{2, 2} - \lambda & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} - \lambda | ||
+ | \end{vmatrix} = 0 | ||
+ | </tex> | ||
+ | |||
+ | <tex>- \lambda | ||
+ | \begin{vmatrix} | ||
+ | 1 & 1 & \cdots & 1 \\ | ||
+ | k_{2, 1} & k_{2, 2} - \lambda & \cdots & k_{2, |V|} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots \\ | ||
+ | k_{|V|, 1} & k_{|V|, 2} & \cdots & k_{|V|, |V|} - \lambda | ||
+ | \end{vmatrix}= 0. | ||
+ | </tex> | ||
+ | |||
+ | Следовательно, <tex>0</tex> является собственным значением. | ||
+ | |||
+ | '''Доказательство кратности:''' | ||
+ | |||
+ | Пусть дан граф <tex>G</tex> c <tex>n</tex> компонентами связности. Перенумеруем его вершины так, чтобы сначала шли вершины первой компоненты связности, затем второй и т.д. Тогда матрица Кирхгофа примет блочно-диагональный вид, и <tex>i</tex>-тый блок этой матрицы будет являтся матрицей Кирхгофа для <tex>i</tex>-той компоненты связности. | ||
+ | |||
+ | Из свойства блочно-диагональной матрицы <tex>\det K = \det K_{1} \cdot \det K_{2} \cdot \ldots \cdot \det K_{n}</tex>, где <tex>K_{i}</tex> — матрица Кирхгофа для <tex>i</tex>-той компоненты связности, и свойства, доказанного выше, | ||
+ | |||
+ | <tex>\det K_{i} = - \lambda \cdot det X_{i} \quad \Rightarrow \quad \det K = (-1)^{n} \cdot \lambda^{n} \cdot \det X_{1} \cdot \det X_{2} \cdot \ldots \cdot \det X_{n}</tex> | ||
+ | }} | ||
− | + | ==См. также== | |
− | + | *[[Связь матрицы Кирхгофа и матрицы инцидентности]] | |
+ | *[[Подсчет числа остовных деревьев с помощью матрицы Кирхгофа]] | ||
− | ==Источники== | + | ==Источники информации== |
− | Асанов М., Баранский В., Расин В. | + | *Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы. стр. 18 |
+ | *[http://ru.wikipedia.org/wiki/%CC%E0%F2%F0%E8%F6%E0_%CA%E8%F0%F5%E3%EE%F4%E0 Википедия — Матрица Кирхгофа] | ||
[[Категория: Алгоритмы и структуры данных]] | [[Категория: Алгоритмы и структуры данных]] | ||
− | [[Категория: Остовные деревья ]] | + | [[Категория: Остовные деревья]] |
+ | [[Категория: Свойства остовных деревьев ]] |
Текущая версия на 19:12, 4 сентября 2022
Определение: |
Матрицей Кирхгофа простого графа называется матрица , элементы которой определяются равенством: |
Иными словами, на главной диагонали матрицы Кирхгофа находятся степени вершин, а на пересечении
-й строки и -го столбца ( ) стоит , если вершины с номерами и смежны, и в противном случае.Пример матрицы Кирхгофа
Граф | Матрица Кирхгофа |
---|---|
Некоторые свойства
Утверждение: |
Сумма элементов каждой строки (столбца) матрицы Кирхгофа равна нулю:
|
Утверждение: |
Определитель матрицы Кирхгофа равен нулю:
|
Прибавим к первой строке все остальные строки (это не изменит значение определителя):
Так как сумма элементов каждого столбца равна , получим: |
Утверждение: |
Матрица Кирхгофа простого графа симметрична:
|
Утверждение: |
Связь с матрицей смежности:
|
Утверждение: |
Связь с матрицей инцидентности:
|
Утверждение: |
собственным значением матрицы, кратность его равна числу компонент связности графа. является |
Собственным значением матрицы называют значения , которые удовлетворяют уравнению:
Прибавим к первой строке все остальные строки (это не изменит значение определителя):
Так как сумма элементов каждого столбца равна , получим:
Следовательно, является собственным значением.Доказательство кратности: Пусть дан граф c компонентами связности. Перенумеруем его вершины так, чтобы сначала шли вершины первой компоненты связности, затем второй и т.д. Тогда матрица Кирхгофа примет блочно-диагональный вид, и -тый блок этой матрицы будет являтся матрицей Кирхгофа для -той компоненты связности.Из свойства блочно-диагональной матрицы , где — матрица Кирхгофа для -той компоненты связности, и свойства, доказанного выше, |
См. также
- Связь матрицы Кирхгофа и матрицы инцидентности
- Подсчет числа остовных деревьев с помощью матрицы Кирхгофа
Источники информации
- Асанов М., Баранский В., Расин В.: Дискретная математика: Графы, матроиды, алгоритмы. стр. 18
- Википедия — Матрица Кирхгофа