Интеграл с переменным верхним пределом — различия между версиями
Rybak (обсуждение | вклад) (→Важное следствие: +id) |
м (rollbackEdits.php mass rollback) |
||
(не показано 7 промежуточных версий 4 участников) | |||
Строка 94: | Строка 94: | ||
Поэтому, если <tex>\tau</tex> {{---}} разбиение <tex>[a; b]</tex>, то | Поэтому, если <tex>\tau</tex> {{---}} разбиение <tex>[a; b]</tex>, то | ||
− | <tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)</tex>. Так как <tex>F</tex> дифференцируема, то, применив | + | <tex>F(b) - F(a) = \sum\limits_{k = 0}^{n - 1} F(x_{k + 1}) - F(x_k)</tex>. Так как <tex>F</tex> дифференцируема, то, применив для каждого промежутка из разбиения формулу Лагранжа, получим: |
<tex>F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x</tex> | <tex>F(x_{k + 1}) - F(x_k) = F'(\bar x_k) \Delta x_k = f(\bar x_k) \Delta x</tex> | ||
Строка 104: | Строка 104: | ||
=== Следствие === | === Следствие === | ||
+ | Объединяя эту теорему со [[#barrou_sl|следствием]] к теореме Барроу получаем следующий факт: | ||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>, <tex>F</tex> {{---}} одна из первообразных. | Пусть <tex>f</tex> {{---}} непрерывна на <tex>[a; b]</tex>, <tex>F</tex> {{---}} одна из первообразных. | ||
Тогда <tex>\int\limits_a^b f(x) dx = F(b) - F(a)</tex> | Тогда <tex>\int\limits_a^b f(x) dx = F(b) - F(a)</tex> | ||
− | + | }} | |
− | + | == Формулы == | |
− | + | === Вычисление определенного интеграла по частям === | |
− | |||
<tex>\int\limits_a^b u(x) d v(x) = uv|_a^b - \int\limits_a^b v(x) d u(x)</tex> | <tex>\int\limits_a^b u(x) d v(x) = uv|_a^b - \int\limits_a^b v(x) d u(x)</tex> | ||
− | + | === Вычисление определенного интеграла сложной функции === | |
+ | {{Утверждение | ||
+ | |id = formula2 | ||
+ | |statement= | ||
Пусть | Пусть | ||
Строка 124: | Строка 127: | ||
<tex>\varphi(t) \in [a; b]</tex>, <tex>b = \varphi(t_2)</tex>, <tex>a = \varphi(t_1)</tex> | <tex>\varphi(t) \in [a; b]</tex>, <tex>b = \varphi(t_2)</tex>, <tex>a = \varphi(t_1)</tex> | ||
− | + | Тогда <tex>\quad \exists \varphi'(t) \Rightarrow \int\limits_a^b f(x) d x = \int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) d t</tex> | |
− | + | |proof = | |
− | + | Монотонность <tex>\varphi</tex> не требуется. Это связано с тем, что мы вычисляем определённый интеграл, то есть число. | |
− | + | <!-- | |
− | Монотонность <tex>\varphi</tex> не требуется. Это связано с тем, что мы вычисляем определённый интеграл( | + | ({{TODO|t=что за бреееед????}}) |
+ | Все нормально | ||
+ | --> | ||
− | + | Как правило, в этих формулах считается, что все функции непрерывны. | |
− | <tex>f</tex> {{---}} непрерывна. Значит, <tex>\exists F: \ F' = f</tex> | + | <tex>f</tex> {{---}} непрерывна на <tex>[a,b]</tex>. Значит, <tex>\exists F: \ F' = f</tex> |
По формуле Ньютона-Лейбница, <tex>\int\limits_a^b f = F(b) - F(a)</tex>. | По формуле Ньютона-Лейбница, <tex>\int\limits_a^b f = F(b) - F(a)</tex>. | ||
Строка 140: | Строка 145: | ||
<tex>G'(t) = F'(x) \varphi'(t) = f(\varphi(t)) \varphi'(t)</tex> | <tex>G'(t) = F'(x) \varphi'(t) = f(\varphi(t)) \varphi'(t)</tex> | ||
− | <tex>\int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) dt = | + | <tex>\int\limits_{t_1}^{t_2} f(\varphi(t)) \varphi'(t) dt = |
+ | G(t_2) - G(t_1) = | ||
+ | F(\varphi(t_2)) - F(\varphi(t_1)) = | ||
+ | F(b) - F(a)</tex> | ||
У интересующих интегралов правые части совпали, значит, интегралы равны. | У интересующих интегралов правые части совпали, значит, интегралы равны. | ||
}} | }} |
Текущая версия на 19:12, 4 сентября 2022
Эта статья находится в разработке!
Утверждение
Утверждение: |
Пусть и . Тогда |
По условию . Проинтегрируем каждую часть:. Посчитаем значения крайних интегралов и поделим всё на . . |
Следствие
Утверждение: |
Пусть — непрерывна на . Тогда |
Определим , .Тогда По предыдущему утверждению, — множество значений функции. и в силу непрерывности по теореме Коши подходящее найдётся. |
Определение: |
Объектом исследования этого параграфа является | , , . Такая функция называется интегралом с переменным верхним пределом.
Свойства
№1
Утверждение: |
— непрерывна на . |
Так как этого утверждения), то . Тогда ограничена (в силу — непрерывна. |
Теорема Барроу
Теорема (Барроу): |
Пусть и непрерывна в .
Тогда дифференцируема в этой точке и её производная равна . |
Доказательство: |
Приращение при в силу непрерывности в точке выполняется Рассмотрим Устремляя . По первому утверждению получаем , получаем |
Важное следствие
Утверждение: |
Пусть — непрерывна на . Тогда на этом отрезке у неё существует неопределённый интеграл. |
В силу непрерывности функции на отрезке и теоремы Барроу Значит, неопределённый интеграл существует. — одна из первообразных. |
Формула Ньютона-Лейбница
Теорема (формула Ньютона-Лейбница): |
Пусть дифференцируема на , её производная интегрируема на этом же отрезке. Тогда
|
Доказательство: |
Так как — интегрируема, то равен пределу интегральных сумм при любой системе промежуточных точек для .Поэтому, если — разбиение , то. Так как дифференцируема, то, применив для каждого промежутка из разбиения формулу Лагранжа, получим:
, следовательно, правая часть стремится к интегралу, левая — постоянна. Значит, в пределе, получаем нужную формулу. |
Следствие
Объединяя эту теорему со следствием к теореме Барроу получаем следующий факт:
Утверждение: |
Пусть — непрерывна на , — одна из первообразных.
Тогда |
Формулы
Вычисление определенного интеграла по частям
Вычисление определенного интеграла сложной функции
Утверждение: |
Пусть
Тогда , , |
Монотонность не требуется. Это связано с тем, что мы вычисляем определённый интеграл, то есть число.Как правило, в этих формулах считается, что все функции непрерывны. — непрерывна на . Значит, По формуле Ньютона-Лейбница, .
У интересующих интегралов правые части совпали, значит, интегралы равны. |