Обсуждение участника:178.70.143.94 — различия между версиями
(→Связные графы) |
(→Связные графы) |
||
Строка 7: | Строка 7: | ||
{{Лемма | {{Лемма | ||
|statement= | |statement= | ||
− | + | <tex dpi="150">G_{n} = 2^{\binom{n}{2}}</tex>, где <tex dpi="150">G_{n}</tex> {{---}} количество помеченных графов с <tex dpi="130">n</tex> вершинами. | |
}} | }} | ||
Текущая версия на 16:14, 21 июня 2020
Связные графы
Определение: |
- количество связных графов с вершинами. |
Лемма: |
, где — количество помеченных графов с вершинами. |
Утверждение: |
, — количество связных графов с вершинами. |
Рассмотрим соотношение количества связных и несвязных графов. Очевидно, что [1] несвязных графов. , где — количество несвязных графов. Также , где — количество корневыхВычислим . Заметим, что, так как граф является несвязным, то в нём найдётся компонента связности, внутри которой лежит корневая вершина, а остальной граф будет представлять собой одну или более компонент связности. Переберем количество вершин в компоненте связности, содержащей корневую вершину. . Для каждого посчитаем количество таких графов. Количество способов выбрать вершин из равно . Оставшийся граф является произвольным, таким образом, количество помеченных графов в нем равно . Количество способов выделить корневую вершину в компоненте связности из вершин равно . Также количество связных графов в компоненте связности с корневой вершиной равно .Итого, для фиксированного количество корневых несвязных графов:. Значит, количество несвязных графов с вершинами равно:
Таким образом, количество связных графов с вершинами: |