Случайные графы — различия между версиями
Maxlih (обсуждение | вклад) (Добавлено наименование модели (Эрдёша-Реньи). Добавлено уточнение в событии связности о наличии изолированных вершин.) |
м (rollbackEdits.php mass rollback) |
||
(не показано 6 промежуточных версий 4 участников) | |||
Строка 1: | Строка 1: | ||
− | |||
{{Определение | {{Определение | ||
|neat = 1 | |neat = 1 | ||
Строка 91: | Строка 90: | ||
{{Теорема | {{Теорема | ||
− | |statement=<tex>p = \dfrac{c\ln n}{n}</tex>, тогда при <tex>c < 1</tex> граф а.п.н связен, при <tex>c > 1</tex> граф а.п.н не связен, то есть | + | |statement=<tex>p = \dfrac{c\ln n}{n}</tex>, тогда при <tex>c < 1</tex> граф а.п.н связен, при <tex>c > 1</tex> граф а.п.н не связен. |
+ | }} | ||
+ | |||
+ | == Распределение степеней вершин == | ||
+ | {{Определение | ||
+ | |id=def_degree_dist | ||
+ | |definition='''Распределение степеней вершин случайного графа''' - это функция <tex>P(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что вершина <tex>\xi</tex> имеет степень <tex>x</tex>. Другими словами, распределение степеней <tex>P(k)</tex> графа определяется как доля узлов, имеющих степень <tex>k</tex>. | ||
+ | }} | ||
+ | {{Пример | ||
+ | |id=example_1 | ||
+ | |example=Если есть в общей сложности <tex>n</tex> узлов в графе и из них <tex>n_k</tex> имеют степень <tex>k</tex>, то <tex>P(k) = \frac{n_k}{n}</tex>. Другими словами, <tex>P(k)</tex> равно вероятности того, что отдельно взятая вершина имеет степень <tex>k</tex>. | ||
+ | }} | ||
+ | |||
+ | {{Утверждение | ||
+ | |statement=Дан случайный граф <tex>G(n, p)</tex> в биноминальной модели. Тогда для него распределение степеней вершин | ||
+ | <p> | ||
+ | <tex> | ||
+ | \begin{equation*} | ||
+ | P(k) = {n-1 \choose k} p^k(1-p)^{n-1-k} | ||
+ | \end{equation*} | ||
+ | </tex> | ||
+ | </p> | ||
+ | |proof=Действительно, если вероятность появления ребра <tex>p</tex>, то вероятность появления ровно <tex>k</tex> рёбер у вершины равна <tex>p^k(1-p)^{n-1-k}</tex>([[схема Бернулли]]). Таких наборов рёбер у одной вершины всего <tex>{n-1 \choose k}</tex>, откуда получаем искомое распределение. | ||
+ | }} | ||
+ | |||
+ | == Распределение максимальной степени вершин == | ||
+ | {{Определение | ||
+ | |id=def_max_degree_dist | ||
+ | |definition='''Распределение максимальной степени вершин случайного графа''' - это функция <tex>Q(x)</tex>, определённая на <tex>\mathbb{R}</tex> как <tex>P(\xi=x)</tex>, то есть выражающая вероятность того, что максимальная степень вершины <tex>\xi</tex> равна <tex>x</tex>. | ||
+ | }} | ||
+ | {{Утверждение | ||
+ | |statement=<tex>Q(k) = P(k) \cdot (1 - \sum_{x=k+1}^{n} P(x))</tex> | ||
+ | |proof=Будем выводить формулу для <tex>Q(k)</tex> через распределение степеней вершин <tex>P(k)</tex>. | ||
+ | |||
+ | Максимальная степень вершины равна <tex>k</tex> тогда и только тогда, когда не существует вершины степенью больше <tex>k</tex>. Таким образом, нужно посчитать вероятность события <tex>A: \exists v\in G: \; deg(v) = k \;\&\; !\exists v\in G: \; deg(v) > x</tex>. | ||
+ | |||
+ | <tex>P(\exists v: \; deg(v) = k) = P(k)</tex> | ||
+ | |||
+ | <tex>P(k)</tex> - вероятность того, что вершина имеет степень <tex>k</tex>. Тогда вероятность того, что имеет одну из степеней <tex>1...k</tex> - <tex>\sum_{x=1}^{k}P(x)</tex>. Нам нужно обратное событие, при наступлении которого вершина имеет степень больше <tex>k</tex>. Его вероятность равна <tex>1 - \sum_{x=1}^{k} P(x)</tex>. | ||
+ | |||
+ | <tex>P(!\exists v: \; deg(v) > k) = 1 - \sum_{x=1}^{k} P(x)</tex> | ||
+ | |||
+ | События независимы, поэтому получаем: <tex>Q(k) = P(k) \cdot (1 - \sum_{x=1}^{k} P(x))</tex> | ||
}} | }} | ||
Строка 120: | Строка 161: | ||
|statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} пороговая функция. | |statement=Пусть рассматривается свойство графа иметь диаметр два. Тогда <tex>p = \sqrt{2} \sqrt{\dfrac{\ln n}{n}}</tex> {{---}} пороговая функция. | ||
|proof= | |proof= | ||
− | Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если кратчайшее расстояние между <tex>u</tex> и <tex>v</tex> | + | Назовем вершины <tex>u</tex> и <tex>v</tex> плохой парой, если кратчайшее расстояние между <tex>u</tex> и <tex>v</tex> больше двух. <tex>B_{i, j}</tex> {{---}} индикаторная величина, равная <tex>1</tex>, если <tex>i</tex> и <tex>j</tex> являются плохой парой. |
<tex>N_z = \sum\limits_{i, j} B_{i,j}</tex> | <tex>N_z = \sum\limits_{i, j} B_{i,j}</tex> | ||
<tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex> | <tex>P(B_{i, j}) = (1 - p)(1 - p^2)^{n - 2}</tex> | ||
Строка 157: | Строка 198: | ||
− | [[Категория: Дискретная математика и алгоритмы]] | + | [[Категория: Дискретная математика и алгоритмы]][[Категория: Теория графов]] |
Текущая версия на 19:08, 4 сентября 2022
Определение:
Модель Эрдёша-Реньи (англ. Erdős–Rényi model) — модель генерации случайных графов, в которой все графы с фиксированным набором вершин и фиксированным набором рёбер одинаково вероятны. Существует два тесно связанных варианта модели: биномиальная и равномерная.
Определение:
Биномиальная модель случайного графа (англ. binomial random graph model) вероятностное пространство . , , где — число ребер в графе.
— модель, в которой каждое ребро входит в случайный граф независимо от остальных ребер с вероятностью . —
Определение:
Равномерная модель случайного графа (англ. uniform random graph model)
— модель, в которой все графы с ребрами равновероятны. — вероятностное пространство. , .
Определение: |
Свойство | асимптотически почти наверное истинно, если , где — вероятность графа обладать этим свойством.
Определение: |
Свойство | асимптотически почти наверное ложно, если , где — вероятность графа обладать этим свойством.
Содержание
Существование треугольников в случайном графе
Теорема: |
Если , то асимптотически почти наверное (далее а.п.н) не содержит треугольников. |
Доказательство: |
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник.Воспользуемся неравенством Маркова: , при . |
Теорема: |
Если , то а.п.н содержит треугольник. |
Доказательство: |
Пусть — число треугольников в графе, — индикаторная случайная величина, равная , если вершины , и образуют треугольник.Воспользуемся неравенством Чебышева: . Найдем :
, при |
Связность графа
Лемма: |
Если , , . Тогда . |
Доказательство: |
Пусть — индикаторная величина, равная нулю, если связен, и , если содержит компонент связности.— число компонент связности размера . , если — компонента связности.
.
Последняя сумма симметрична (слагаемые при и равны), кроме того слагаемое при — наибольшее (для доказательства достаточно рассмотреть отношения слагаемых при и ).Оценим сверху первое слагаемое :
, поэтому . , при |
Лемма: |
Если , , . Тогда . |
Теорема: |
, тогда при граф а.п.н связен, при граф а.п.н не связен. |
Распределение степеней вершин
Определение: |
Распределение степеней вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что вершина имеет степень . Другими словами, распределение степеней графа определяется как доля узлов, имеющих степень .
Пример: |
Если есть в общей сложности | узлов в графе и из них имеют степень , то . Другими словами, равно вероятности того, что отдельно взятая вершина имеет степень .
Утверждение: |
Дан случайный граф в биноминальной модели. Тогда для него распределение степеней вершин
|
Действительно, если вероятность появления ребра схема Бернулли). Таких наборов рёбер у одной вершины всего , откуда получаем искомое распределение. | , то вероятность появления ровно рёбер у вершины равна (
Распределение максимальной степени вершин
Определение: |
Распределение максимальной степени вершин случайного графа - это функция | , определённая на как , то есть выражающая вероятность того, что максимальная степень вершины равна .
Утверждение: |
Будем выводить формулу для через распределение степеней вершин .Максимальная степень вершины равна тогда и только тогда, когда не существует вершины степенью больше . Таким образом, нужно посчитать вероятность события .
- вероятность того, что вершина имеет степень . Тогда вероятность того, что имеет одну из степеней - . Нам нужно обратное событие, при наступлении которого вершина имеет степень больше . Его вероятность равна . События независимы, поэтому получаем: |
Теоремы о связи вероятности и матожидания
Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , то а.п.н ложно. |
Доказательство: |
Воспользуемся неравенством Маркова: , при . |
Теорема: |
Пусть — число объектов в графе . — свойство. Тогда, если , при , и то а.п.н истинно. |
Доказательство: |
Воспользуемся неравенством Чебышева: , при . |
Графы, имеющие диаметр два
Определение: |
— некоторое свойство случайного графа. называется пороговой функцией (англ. threshold function), если граф при а.п.н не имеет такого свойства, а при а.п.н имеет. |
Теорема: |
Пусть рассматривается свойство графа иметь диаметр два. Тогда — пороговая функция. |
Доказательство: |
Назовем вершины и плохой парой, если кратчайшее расстояние между и больше двух. — индикаторная величина, равная , если и являются плохой парой.Сначала докажем, что при , граф а.п.н не имеет диаметр, равный двум. Для этого оценим матожидание .При вышедоказанному граф а.п.н. не имеет диаметр, равный двум. последнее выражение стремится к , поРассмотрим :
Рассмотрим сумму :Если , , и различны, то .
В итоге: . Из этого следует, что , а значит граф а.п.н имеет диаметр, равный двум при . |
См. также
- Дискретная случайная величина
- Дисперсия случайной величины
- Математическое ожидание случайной величины
Источники информации
- Coursera — Онлайн-курс
- Wikipedia — Random graphs
- Avrim Blum, John Hopcroft, and Ravindran Kannan. «Foundations of Data Science» — «Cambridge University Press», 2013 г. — 245-260 стр. — ISBN 978-1108485067